Step |
Hyp |
Ref |
Expression |
1 |
|
irrapxlem1 |
|- ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 0 ... B ) E. y e. ( 0 ... B ) ( x < y /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) ) |
2 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
3 |
2
|
ad3antlr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> B e. RR ) |
4 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
5 |
4
|
ad3antrrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> A e. RR ) |
6 |
|
elfzelz |
|- ( x e. ( 0 ... B ) -> x e. ZZ ) |
7 |
6
|
zred |
|- ( x e. ( 0 ... B ) -> x e. RR ) |
8 |
7
|
ad2antlr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> x e. RR ) |
9 |
5 8
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( A x. x ) e. RR ) |
10 |
|
1rp |
|- 1 e. RR+ |
11 |
10
|
a1i |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> 1 e. RR+ ) |
12 |
9 11
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( A x. x ) mod 1 ) e. RR ) |
13 |
3 12
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( ( A x. x ) mod 1 ) ) e. RR ) |
14 |
|
intfrac |
|- ( ( B x. ( ( A x. x ) mod 1 ) ) e. RR -> ( B x. ( ( A x. x ) mod 1 ) ) = ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) ) |
15 |
13 14
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( ( A x. x ) mod 1 ) ) = ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) ) |
16 |
|
elfzelz |
|- ( y e. ( 0 ... B ) -> y e. ZZ ) |
17 |
16
|
zred |
|- ( y e. ( 0 ... B ) -> y e. RR ) |
18 |
17
|
adantl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> y e. RR ) |
19 |
5 18
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( A x. y ) e. RR ) |
20 |
19 11
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( A x. y ) mod 1 ) e. RR ) |
21 |
3 20
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( ( A x. y ) mod 1 ) ) e. RR ) |
22 |
|
intfrac |
|- ( ( B x. ( ( A x. y ) mod 1 ) ) e. RR -> ( B x. ( ( A x. y ) mod 1 ) ) = ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) |
23 |
21 22
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( ( A x. y ) mod 1 ) ) = ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) |
24 |
15 23
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) = ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) |
25 |
24
|
fveq2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) = ( abs ` ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) = ( abs ` ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) ) |
27 |
|
simpr |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) |
28 |
27
|
oveq1d |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) = ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) ) |
29 |
28
|
oveq1d |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) = ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) |
30 |
29
|
fveq2d |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( abs ` ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) = ( abs ` ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) ) |
31 |
21
|
flcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) e. ZZ ) |
32 |
31
|
zcnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) e. CC ) |
33 |
13 11
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) e. RR ) |
34 |
33
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) e. CC ) |
35 |
21 11
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) e. RR ) |
36 |
35
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) e. CC ) |
37 |
32 34 36
|
pnpcand |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) = ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) - ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) |
38 |
37
|
fveq2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) = ( abs ` ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) - ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) |
39 |
|
0red |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> 0 e. RR ) |
40 |
|
1red |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> 1 e. RR ) |
41 |
|
modelico |
|- ( ( ( B x. ( ( A x. x ) mod 1 ) ) e. RR /\ 1 e. RR+ ) -> ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) ) |
42 |
13 10 41
|
sylancl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) ) |
43 |
|
modelico |
|- ( ( ( B x. ( ( A x. y ) mod 1 ) ) e. RR /\ 1 e. RR+ ) -> ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) ) |
44 |
21 10 43
|
sylancl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) ) |
45 |
|
icodiamlt |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) /\ ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) e. ( 0 [,) 1 ) ) ) -> ( abs ` ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) - ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) < ( 1 - 0 ) ) |
46 |
39 40 42 44 45
|
syl22anc |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) - ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) < ( 1 - 0 ) ) |
47 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
48 |
46 47
|
breqtrdi |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) - ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) < 1 ) |
49 |
38 48
|
eqbrtrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) < 1 ) |
50 |
49
|
adantr |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( abs ` ( ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) < 1 ) |
51 |
30 50
|
eqbrtrd |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( abs ` ( ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) + ( ( B x. ( ( A x. x ) mod 1 ) ) mod 1 ) ) - ( ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) + ( ( B x. ( ( A x. y ) mod 1 ) ) mod 1 ) ) ) ) < 1 ) |
52 |
26 51
|
eqbrtrd |
|- ( ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) < 1 ) |
53 |
52
|
ex |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) -> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) < 1 ) ) |
54 |
12 20
|
resubcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) e. CC ) |
56 |
55
|
abscld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) e. RR ) |
57 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
58 |
57
|
ad3antlr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> 0 < B ) |
59 |
58
|
gt0ne0d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> B =/= 0 ) |
60 |
3 59
|
rereccld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( 1 / B ) e. RR ) |
61 |
|
ltmul2 |
|- ( ( ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) e. RR /\ ( 1 / B ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) <-> ( B x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) < ( B x. ( 1 / B ) ) ) ) |
62 |
56 60 3 58 61
|
syl112anc |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) <-> ( B x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) < ( B x. ( 1 / B ) ) ) ) |
63 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
64 |
63
|
nn0ge0d |
|- ( B e. NN -> 0 <_ B ) |
65 |
64
|
ad3antlr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> 0 <_ B ) |
66 |
3 65
|
absidd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` B ) = B ) |
67 |
66
|
eqcomd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> B = ( abs ` B ) ) |
68 |
67
|
oveq1d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) = ( ( abs ` B ) x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) ) |
69 |
3
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> B e. CC ) |
70 |
69 55
|
absmuld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( B x. ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) = ( ( abs ` B ) x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) ) |
71 |
12
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( A x. x ) mod 1 ) e. CC ) |
72 |
20
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( A x. y ) mod 1 ) e. CC ) |
73 |
69 71 72
|
subdid |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) = ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) |
74 |
73
|
fveq2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( abs ` ( B x. ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) = ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) ) |
75 |
68 70 74
|
3eqtr2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) = ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) ) |
76 |
69 59
|
recidd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( B x. ( 1 / B ) ) = 1 ) |
77 |
75 76
|
breq12d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( B x. ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) ) < ( B x. ( 1 / B ) ) <-> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) < 1 ) ) |
78 |
62 77
|
bitrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) <-> ( abs ` ( ( B x. ( ( A x. x ) mod 1 ) ) - ( B x. ( ( A x. y ) mod 1 ) ) ) ) < 1 ) ) |
79 |
53 78
|
sylibrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) -> ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) ) ) |
80 |
79
|
anim2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) /\ y e. ( 0 ... B ) ) -> ( ( x < y /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> ( x < y /\ ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) ) ) ) |
81 |
80
|
reximdva |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ x e. ( 0 ... B ) ) -> ( E. y e. ( 0 ... B ) ( x < y /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> E. y e. ( 0 ... B ) ( x < y /\ ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) ) ) ) |
82 |
81
|
reximdva |
|- ( ( A e. RR+ /\ B e. NN ) -> ( E. x e. ( 0 ... B ) E. y e. ( 0 ... B ) ( x < y /\ ( |_ ` ( B x. ( ( A x. x ) mod 1 ) ) ) = ( |_ ` ( B x. ( ( A x. y ) mod 1 ) ) ) ) -> E. x e. ( 0 ... B ) E. y e. ( 0 ... B ) ( x < y /\ ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) ) ) ) |
83 |
1 82
|
mpd |
|- ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 0 ... B ) E. y e. ( 0 ... B ) ( x < y /\ ( abs ` ( ( ( A x. x ) mod 1 ) - ( ( A x. y ) mod 1 ) ) ) < ( 1 / B ) ) ) |