| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							irrapxlem2 | 
							 |-  ( ( A e. RR+ /\ B e. NN ) -> E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. NN )  | 
						
						
							| 5 | 
							
								4
							 | 
							nnzd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. ZZ )  | 
						
						
							| 6 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ( 0 ... B ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							elfzelzd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ZZ )  | 
						
						
							| 8 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ( 0 ... B ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							elfzelzd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ZZ )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							zsubcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ZZ )  | 
						
						
							| 11 | 
							
								
							 | 
							1m1e0 | 
							 |-  ( 1 - 1 ) = 0  | 
						
						
							| 12 | 
							
								
							 | 
							elfzelz | 
							 |-  ( a e. ( 0 ... B ) -> a e. ZZ )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antrl | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. ZZ )  | 
						
						
							| 14 | 
							
								13
							 | 
							zred | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. RR )  | 
						
						
							| 15 | 
							
								
							 | 
							elfzelz | 
							 |-  ( b e. ( 0 ... B ) -> b e. ZZ )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antll | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. ZZ )  | 
						
						
							| 17 | 
							
								16
							 | 
							zred | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. RR )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							posdifd | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( a < b <-> 0 < ( b - a ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							biimpa | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < ( b - a ) )  | 
						
						
							| 20 | 
							
								11 19
							 | 
							eqbrtrid | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 - 1 ) < ( b - a ) )  | 
						
						
							| 21 | 
							
								
							 | 
							zlem1lt | 
							 |-  ( ( 1 e. ZZ /\ ( b - a ) e. ZZ ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) )  | 
						
						
							| 22 | 
							
								2 10 21
							 | 
							sylancr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbird | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 <_ ( b - a ) )  | 
						
						
							| 24 | 
							
								7
							 | 
							zred | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. RR )  | 
						
						
							| 25 | 
							
								9
							 | 
							zred | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. RR )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							resubcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. RR )  | 
						
						
							| 27 | 
							
								
							 | 
							0red | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 e. RR )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							resubcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) e. RR )  | 
						
						
							| 29 | 
							
								4
							 | 
							nnred | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. RR )  | 
						
						
							| 30 | 
							
								
							 | 
							elfzle1 | 
							 |-  ( a e. ( 0 ... B ) -> 0 <_ a )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							syl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 <_ a )  | 
						
						
							| 32 | 
							
								27 25 24 31
							 | 
							lesub2dd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ ( b - 0 ) )  | 
						
						
							| 33 | 
							
								24
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. CC )  | 
						
						
							| 34 | 
							
								33
							 | 
							subid1d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) = b )  | 
						
						
							| 35 | 
							
								
							 | 
							elfzle2 | 
							 |-  ( b e. ( 0 ... B ) -> b <_ B )  | 
						
						
							| 36 | 
							
								6 35
							 | 
							syl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b <_ B )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) <_ B )  | 
						
						
							| 38 | 
							
								26 28 29 32 37
							 | 
							letrd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ B )  | 
						
						
							| 39 | 
							
								3 5 10 23 38
							 | 
							elfzd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ( 1 ... B ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantrr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( b - a ) e. ( 1 ... B ) )  | 
						
						
							| 41 | 
							
								
							 | 
							rpre | 
							 |-  ( A e. RR+ -> A e. RR )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. RR )  | 
						
						
							| 43 | 
							
								42 25
							 | 
							remulcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. RR )  | 
						
						
							| 44 | 
							
								42 24
							 | 
							remulcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. RR )  | 
						
						
							| 45 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a < b )  | 
						
						
							| 46 | 
							
								25 24 45
							 | 
							ltled | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a <_ b )  | 
						
						
							| 47 | 
							
								
							 | 
							rpgt0 | 
							 |-  ( A e. RR+ -> 0 < A )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < A )  | 
						
						
							| 49 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( a e. RR /\ b e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) )  | 
						
						
							| 50 | 
							
								25 24 42 48 49
							 | 
							syl112anc | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							mpbid | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) <_ ( A x. b ) )  | 
						
						
							| 52 | 
							
								
							 | 
							flword2 | 
							 |-  ( ( ( A x. a ) e. RR /\ ( A x. b ) e. RR /\ ( A x. a ) <_ ( A x. b ) ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) )  | 
						
						
							| 53 | 
							
								43 44 51 52
							 | 
							syl3anc | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							uznn0sub | 
							 |-  ( ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantrr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 )  | 
						
						
							| 57 | 
							
								42
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. CC )  | 
						
						
							| 58 | 
							
								25
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. CC )  | 
						
						
							| 59 | 
							
								57 33 58
							 | 
							subdid | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. ( b - a ) ) = ( ( A x. b ) - ( A x. a ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							oveq1d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) )  | 
						
						
							| 61 | 
							
								44
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. CC )  | 
						
						
							| 62 | 
							
								43
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. CC )  | 
						
						
							| 63 | 
							
								44
							 | 
							flcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ZZ )  | 
						
						
							| 64 | 
							
								63
							 | 
							zcnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. CC )  | 
						
						
							| 65 | 
							
								43
							 | 
							flcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. ZZ )  | 
						
						
							| 66 | 
							
								65
							 | 
							zcnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. CC )  | 
						
						
							| 67 | 
							
								61 62 64 66
							 | 
							sub4d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							modfrac | 
							 |-  ( ( A x. b ) e. RR -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) )  | 
						
						
							| 69 | 
							
								44 68
							 | 
							syl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							eqcomd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) = ( ( A x. b ) mod 1 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							modfrac | 
							 |-  ( ( A x. a ) e. RR -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) )  | 
						
						
							| 72 | 
							
								43 71
							 | 
							syl | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							eqcomd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) = ( ( A x. a ) mod 1 ) )  | 
						
						
							| 74 | 
							
								70 73
							 | 
							oveq12d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) )  | 
						
						
							| 75 | 
							
								60 67 74
							 | 
							3eqtrd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							fveq2d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) = ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							1rp | 
							 |-  1 e. RR+  | 
						
						
							| 78 | 
							
								77
							 | 
							a1i | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. RR+ )  | 
						
						
							| 79 | 
							
								44 78
							 | 
							modcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. RR )  | 
						
						
							| 80 | 
							
								79
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. CC )  | 
						
						
							| 81 | 
							
								43 78
							 | 
							modcld | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. RR )  | 
						
						
							| 82 | 
							
								81
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. CC )  | 
						
						
							| 83 | 
							
								80 82
							 | 
							abssubd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) = ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) )  | 
						
						
							| 84 | 
							
								76 83
							 | 
							eqtr2d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							breq1d | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							biimpd | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							impr | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) )  | 
						
						
							| 88 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( b - a ) -> ( A x. x ) = ( A x. ( b - a ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							fvoveq1d | 
							 |-  ( x = ( b - a ) -> ( abs ` ( ( A x. x ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - y ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							breq1d | 
							 |-  ( x = ( b - a ) -> ( ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( A x. ( b - a ) ) - y ) = ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							fveq2d | 
							 |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							breq1d | 
							 |-  ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) )  | 
						
						
							| 94 | 
							
								90 93
							 | 
							rspc2ev | 
							 |-  ( ( ( b - a ) e. ( 1 ... B ) /\ ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 /\ ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) )  | 
						
						
							| 95 | 
							
								40 56 87 94
							 | 
							syl3anc | 
							 |-  ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							ex | 
							 |-  ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							rexlimdvva | 
							 |-  ( ( A e. RR+ /\ B e. NN ) -> ( E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) )  | 
						
						
							| 98 | 
							
								1 97
							 | 
							mpd | 
							 |-  ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) )  |