Step |
Hyp |
Ref |
Expression |
1 |
|
irrapxlem2 |
|- ( ( A e. RR+ /\ B e. NN ) -> E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) |
2 |
|
1z |
|- 1 e. ZZ |
3 |
2
|
a1i |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. ZZ ) |
4 |
|
simpllr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. NN ) |
5 |
4
|
nnzd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. ZZ ) |
6 |
|
simplrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ( 0 ... B ) ) |
7 |
6
|
elfzelzd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. ZZ ) |
8 |
|
simplrl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ( 0 ... B ) ) |
9 |
8
|
elfzelzd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. ZZ ) |
10 |
7 9
|
zsubcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ZZ ) |
11 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
12 |
|
elfzelz |
|- ( a e. ( 0 ... B ) -> a e. ZZ ) |
13 |
12
|
ad2antrl |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. ZZ ) |
14 |
13
|
zred |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> a e. RR ) |
15 |
|
elfzelz |
|- ( b e. ( 0 ... B ) -> b e. ZZ ) |
16 |
15
|
ad2antll |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. ZZ ) |
17 |
16
|
zred |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> b e. RR ) |
18 |
14 17
|
posdifd |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( a < b <-> 0 < ( b - a ) ) ) |
19 |
18
|
biimpa |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < ( b - a ) ) |
20 |
11 19
|
eqbrtrid |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 - 1 ) < ( b - a ) ) |
21 |
|
zlem1lt |
|- ( ( 1 e. ZZ /\ ( b - a ) e. ZZ ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) ) |
22 |
2 10 21
|
sylancr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( 1 <_ ( b - a ) <-> ( 1 - 1 ) < ( b - a ) ) ) |
23 |
20 22
|
mpbird |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 <_ ( b - a ) ) |
24 |
7
|
zred |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. RR ) |
25 |
9
|
zred |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. RR ) |
26 |
24 25
|
resubcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. RR ) |
27 |
|
0red |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 e. RR ) |
28 |
24 27
|
resubcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) e. RR ) |
29 |
4
|
nnred |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> B e. RR ) |
30 |
|
elfzle1 |
|- ( a e. ( 0 ... B ) -> 0 <_ a ) |
31 |
8 30
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 <_ a ) |
32 |
27 25 24 31
|
lesub2dd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ ( b - 0 ) ) |
33 |
24
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b e. CC ) |
34 |
33
|
subid1d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) = b ) |
35 |
|
elfzle2 |
|- ( b e. ( 0 ... B ) -> b <_ B ) |
36 |
6 35
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> b <_ B ) |
37 |
34 36
|
eqbrtrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - 0 ) <_ B ) |
38 |
26 28 29 32 37
|
letrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) <_ B ) |
39 |
3 5 10 23 38
|
elfzd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( b - a ) e. ( 1 ... B ) ) |
40 |
39
|
adantrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( b - a ) e. ( 1 ... B ) ) |
41 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
42 |
41
|
ad3antrrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. RR ) |
43 |
42 25
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. RR ) |
44 |
42 24
|
remulcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. RR ) |
45 |
|
simpr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a < b ) |
46 |
25 24 45
|
ltled |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a <_ b ) |
47 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
48 |
47
|
ad3antrrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 0 < A ) |
49 |
|
lemul2 |
|- ( ( a e. RR /\ b e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) ) |
50 |
25 24 42 48 49
|
syl112anc |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( a <_ b <-> ( A x. a ) <_ ( A x. b ) ) ) |
51 |
46 50
|
mpbid |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) <_ ( A x. b ) ) |
52 |
|
flword2 |
|- ( ( ( A x. a ) e. RR /\ ( A x. b ) e. RR /\ ( A x. a ) <_ ( A x. b ) ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) ) |
53 |
43 44 51 52
|
syl3anc |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) ) |
54 |
|
uznn0sub |
|- ( ( |_ ` ( A x. b ) ) e. ( ZZ>= ` ( |_ ` ( A x. a ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) |
55 |
53 54
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) |
56 |
55
|
adantrr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 ) |
57 |
42
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> A e. CC ) |
58 |
25
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> a e. CC ) |
59 |
57 33 58
|
subdid |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. ( b - a ) ) = ( ( A x. b ) - ( A x. a ) ) ) |
60 |
59
|
oveq1d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) |
61 |
44
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. b ) e. CC ) |
62 |
43
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( A x. a ) e. CC ) |
63 |
44
|
flcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. ZZ ) |
64 |
63
|
zcnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. b ) ) e. CC ) |
65 |
43
|
flcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. ZZ ) |
66 |
65
|
zcnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( |_ ` ( A x. a ) ) e. CC ) |
67 |
61 62 64 66
|
sub4d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( A x. a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) ) |
68 |
|
modfrac |
|- ( ( A x. b ) e. RR -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) ) |
69 |
44 68
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) = ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) ) |
70 |
69
|
eqcomd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) = ( ( A x. b ) mod 1 ) ) |
71 |
|
modfrac |
|- ( ( A x. a ) e. RR -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) |
72 |
43 71
|
syl |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) = ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) |
73 |
72
|
eqcomd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) = ( ( A x. a ) mod 1 ) ) |
74 |
70 73
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( ( A x. b ) - ( |_ ` ( A x. b ) ) ) - ( ( A x. a ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) |
75 |
60 67 74
|
3eqtrd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) = ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) |
76 |
75
|
fveq2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) = ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) ) |
77 |
|
1rp |
|- 1 e. RR+ |
78 |
77
|
a1i |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> 1 e. RR+ ) |
79 |
44 78
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. RR ) |
80 |
79
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. b ) mod 1 ) e. CC ) |
81 |
43 78
|
modcld |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. RR ) |
82 |
81
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( A x. a ) mod 1 ) e. CC ) |
83 |
80 82
|
abssubd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. b ) mod 1 ) - ( ( A x. a ) mod 1 ) ) ) = ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) ) |
84 |
76 83
|
eqtr2d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) ) |
85 |
84
|
breq1d |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) |
86 |
85
|
biimpd |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ a < b ) -> ( ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) |
87 |
86
|
impr |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) |
88 |
|
oveq2 |
|- ( x = ( b - a ) -> ( A x. x ) = ( A x. ( b - a ) ) ) |
89 |
88
|
fvoveq1d |
|- ( x = ( b - a ) -> ( abs ` ( ( A x. x ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - y ) ) ) |
90 |
89
|
breq1d |
|- ( x = ( b - a ) -> ( ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) ) ) |
91 |
|
oveq2 |
|- ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( A x. ( b - a ) ) - y ) = ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) |
92 |
91
|
fveq2d |
|- ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( abs ` ( ( A x. ( b - a ) ) - y ) ) = ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) ) |
93 |
92
|
breq1d |
|- ( y = ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) -> ( ( abs ` ( ( A x. ( b - a ) ) - y ) ) < ( 1 / B ) <-> ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) ) |
94 |
90 93
|
rspc2ev |
|- ( ( ( b - a ) e. ( 1 ... B ) /\ ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) e. NN0 /\ ( abs ` ( ( A x. ( b - a ) ) - ( ( |_ ` ( A x. b ) ) - ( |_ ` ( A x. a ) ) ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) |
95 |
40 56 87 94
|
syl3anc |
|- ( ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) /\ ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) |
96 |
95
|
ex |
|- ( ( ( A e. RR+ /\ B e. NN ) /\ ( a e. ( 0 ... B ) /\ b e. ( 0 ... B ) ) ) -> ( ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) ) |
97 |
96
|
rexlimdvva |
|- ( ( A e. RR+ /\ B e. NN ) -> ( E. a e. ( 0 ... B ) E. b e. ( 0 ... B ) ( a < b /\ ( abs ` ( ( ( A x. a ) mod 1 ) - ( ( A x. b ) mod 1 ) ) ) < ( 1 / B ) ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) ) |
98 |
1 97
|
mpd |
|- ( ( A e. RR+ /\ B e. NN ) -> E. x e. ( 1 ... B ) E. y e. NN0 ( abs ` ( ( A x. x ) - y ) ) < ( 1 / B ) ) |