Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> a e. QQ ) |
2 |
|
simpr1 |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> 0 < a ) |
3 |
|
simpr3 |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) |
4 |
2 3
|
jca |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> ( 0 < a /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
5 |
|
breq2 |
|- ( y = a -> ( 0 < y <-> 0 < a ) ) |
6 |
|
fvoveq1 |
|- ( y = a -> ( abs ` ( y - A ) ) = ( abs ` ( a - A ) ) ) |
7 |
|
fveq2 |
|- ( y = a -> ( denom ` y ) = ( denom ` a ) ) |
8 |
7
|
oveq1d |
|- ( y = a -> ( ( denom ` y ) ^ -u 2 ) = ( ( denom ` a ) ^ -u 2 ) ) |
9 |
6 8
|
breq12d |
|- ( y = a -> ( ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) <-> ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
10 |
5 9
|
anbi12d |
|- ( y = a -> ( ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) <-> ( 0 < a /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) |
11 |
10
|
elrab |
|- ( a e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } <-> ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) |
12 |
1 4 11
|
sylanbrc |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> a e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } ) |
13 |
|
simpr2 |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> ( abs ` ( a - A ) ) < B ) |
14 |
|
fvoveq1 |
|- ( x = a -> ( abs ` ( x - A ) ) = ( abs ` ( a - A ) ) ) |
15 |
14
|
breq1d |
|- ( x = a -> ( ( abs ` ( x - A ) ) < B <-> ( abs ` ( a - A ) ) < B ) ) |
16 |
15
|
rspcev |
|- ( ( a e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } /\ ( abs ` ( a - A ) ) < B ) -> E. x e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } ( abs ` ( x - A ) ) < B ) |
17 |
12 13 16
|
syl2anc |
|- ( ( ( ( A e. RR+ /\ B e. RR+ ) /\ a e. QQ ) /\ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> E. x e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } ( abs ` ( x - A ) ) < B ) |
18 |
|
irrapxlem5 |
|- ( ( A e. RR+ /\ B e. RR+ ) -> E. a e. QQ ( 0 < a /\ ( abs ` ( a - A ) ) < B /\ ( abs ` ( a - A ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
19 |
17 18
|
r19.29a |
|- ( ( A e. RR+ /\ B e. RR+ ) -> E. x e. { y e. QQ | ( 0 < y /\ ( abs ` ( y - A ) ) < ( ( denom ` y ) ^ -u 2 ) ) } ( abs ` ( x - A ) ) < B ) |