Metamath Proof Explorer


Theorem irredcl

Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i
|- I = ( Irred ` R )
irredcl.b
|- B = ( Base ` R )
Assertion irredcl
|- ( X e. I -> X e. B )

Proof

Step Hyp Ref Expression
1 irredn0.i
 |-  I = ( Irred ` R )
2 irredcl.b
 |-  B = ( Base ` R )
3 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
4 eqid
 |-  ( .r ` R ) = ( .r ` R )
5 2 3 1 4 isirred2
 |-  ( X e. I <-> ( X e. B /\ -. X e. ( Unit ` R ) /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = X -> ( x e. ( Unit ` R ) \/ y e. ( Unit ` R ) ) ) ) )
6 5 simp1bi
 |-  ( X e. I -> X e. B )