Step |
Hyp |
Ref |
Expression |
1 |
|
irredn0.i |
|- I = ( Irred ` R ) |
2 |
|
irredn0.z |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 2
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
5 |
4
|
anim1i |
|- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> ( .0. e. ( Base ` R ) /\ -. .0. e. ( Unit ` R ) ) ) |
6 |
|
eldif |
|- ( .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) <-> ( .0. e. ( Base ` R ) /\ -. .0. e. ( Unit ` R ) ) ) |
7 |
5 6
|
sylibr |
|- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
3 8 2
|
ringlz |
|- ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
10 |
4 9
|
mpdan |
|- ( R e. Ring -> ( .0. ( .r ` R ) .0. ) = .0. ) |
11 |
10
|
adantr |
|- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
12 |
|
oveq1 |
|- ( x = .0. -> ( x ( .r ` R ) y ) = ( .0. ( .r ` R ) y ) ) |
13 |
12
|
eqeq1d |
|- ( x = .0. -> ( ( x ( .r ` R ) y ) = .0. <-> ( .0. ( .r ` R ) y ) = .0. ) ) |
14 |
|
oveq2 |
|- ( y = .0. -> ( .0. ( .r ` R ) y ) = ( .0. ( .r ` R ) .0. ) ) |
15 |
14
|
eqeq1d |
|- ( y = .0. -> ( ( .0. ( .r ` R ) y ) = .0. <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) |
16 |
13 15
|
rspc2ev |
|- ( ( .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ .0. e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ ( .0. ( .r ` R ) .0. ) = .0. ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) |
17 |
7 7 11 16
|
syl3anc |
|- ( ( R e. Ring /\ -. .0. e. ( Unit ` R ) ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) |
18 |
17
|
ex |
|- ( R e. Ring -> ( -. .0. e. ( Unit ` R ) -> E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) |
19 |
18
|
orrd |
|- ( R e. Ring -> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) |
20 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
21 |
|
eqid |
|- ( ( Base ` R ) \ ( Unit ` R ) ) = ( ( Base ` R ) \ ( Unit ` R ) ) |
22 |
3 20 1 21 8
|
isnirred |
|- ( .0. e. ( Base ` R ) -> ( -. .0. e. I <-> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) ) |
23 |
4 22
|
syl |
|- ( R e. Ring -> ( -. .0. e. I <-> ( .0. e. ( Unit ` R ) \/ E. x e. ( ( Base ` R ) \ ( Unit ` R ) ) E. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) = .0. ) ) ) |
24 |
19 23
|
mpbird |
|- ( R e. Ring -> -. .0. e. I ) |
25 |
24
|
adantr |
|- ( ( R e. Ring /\ X e. I ) -> -. .0. e. I ) |
26 |
|
simpr |
|- ( ( R e. Ring /\ X e. I ) -> X e. I ) |
27 |
|
eleq1 |
|- ( X = .0. -> ( X e. I <-> .0. e. I ) ) |
28 |
26 27
|
syl5ibcom |
|- ( ( R e. Ring /\ X e. I ) -> ( X = .0. -> .0. e. I ) ) |
29 |
28
|
necon3bd |
|- ( ( R e. Ring /\ X e. I ) -> ( -. .0. e. I -> X =/= .0. ) ) |
30 |
25 29
|
mpd |
|- ( ( R e. Ring /\ X e. I ) -> X =/= .0. ) |