| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							irredn0.i | 
							 |-  I = ( Irred ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							irredneg.n | 
							 |-  N = ( invg ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` R ) = ( 1r ` R )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							 |-  ( ( R e. Ring /\ X e. I ) -> R e. Ring )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							irredcl | 
							 |-  ( X e. I -> X e. ( Base ` R ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( R e. Ring /\ X e. I ) -> X e. ( Base ` R ) )  | 
						
						
							| 9 | 
							
								3 4 5 2 6 8
							 | 
							ringnegr | 
							 |-  ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( N ` X ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` R ) = ( Unit ` R )  | 
						
						
							| 11 | 
							
								10 5
							 | 
							1unit | 
							 |-  ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) )  | 
						
						
							| 12 | 
							
								10 2
							 | 
							unitnegcl | 
							 |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Unit ` R ) ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mpdan | 
							 |-  ( R e. Ring -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( R e. Ring /\ X e. I ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) )  | 
						
						
							| 15 | 
							
								1 10 4
							 | 
							irredrmul | 
							 |-  ( ( R e. Ring /\ X e. I /\ ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpd3an3 | 
							 |-  ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqeltrrd | 
							 |-  ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I )  |