Step |
Hyp |
Ref |
Expression |
1 |
|
irredn0.i |
|- I = ( Irred ` R ) |
2 |
|
irredneg.n |
|- N = ( invg ` R ) |
3 |
|
irrednegb.b |
|- B = ( Base ` R ) |
4 |
1 2
|
irredneg |
|- ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I ) |
5 |
4
|
adantlr |
|- ( ( ( R e. Ring /\ X e. B ) /\ X e. I ) -> ( N ` X ) e. I ) |
6 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
7 |
3 2
|
grpinvinv |
|- ( ( R e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
8 |
6 7
|
sylan |
|- ( ( R e. Ring /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
9 |
8
|
adantr |
|- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) = X ) |
10 |
1 2
|
irredneg |
|- ( ( R e. Ring /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I ) |
11 |
10
|
adantlr |
|- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I ) |
12 |
9 11
|
eqeltrrd |
|- ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> X e. I ) |
13 |
5 12
|
impbida |
|- ( ( R e. Ring /\ X e. B ) -> ( X e. I <-> ( N ` X ) e. I ) ) |