| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							irredn0.i | 
							 |-  I = ( Irred ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							irredneg.n | 
							 |-  N = ( invg ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							irrednegb.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							irredneg | 
							 |-  ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantlr | 
							 |-  ( ( ( R e. Ring /\ X e. B ) /\ X e. I ) -> ( N ` X ) e. I )  | 
						
						
							| 6 | 
							
								
							 | 
							ringgrp | 
							 |-  ( R e. Ring -> R e. Grp )  | 
						
						
							| 7 | 
							
								3 2
							 | 
							grpinvinv | 
							 |-  ( ( R e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							 |-  ( ( R e. Ring /\ X e. B ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) = X )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							irredneg | 
							 |-  ( ( R e. Ring /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							 |-  ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> ( N ` ( N ` X ) ) e. I )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqeltrrd | 
							 |-  ( ( ( R e. Ring /\ X e. B ) /\ ( N ` X ) e. I ) -> X e. I )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							impbida | 
							 |-  ( ( R e. Ring /\ X e. B ) -> ( X e. I <-> ( N ` X ) e. I ) )  |