Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( A e. ( RR \ QQ ) <-> ( A e. RR /\ -. A e. QQ ) ) |
2 |
|
qre |
|- ( B e. QQ -> B e. RR ) |
3 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
4 |
2 3
|
sylan2 |
|- ( ( A e. RR /\ B e. QQ ) -> ( A x. B ) e. RR ) |
5 |
4
|
ad2ant2r |
|- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) |
6 |
|
qdivcl |
|- ( ( ( A x. B ) e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) e. QQ ) |
7 |
6
|
3expb |
|- ( ( ( A x. B ) e. QQ /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) e. QQ ) |
8 |
7
|
expcom |
|- ( ( B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) |
9 |
8
|
adantl |
|- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) |
10 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
11 |
|
recn |
|- ( A e. RR -> A e. CC ) |
12 |
|
divcan4 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
13 |
11 12
|
syl3an1 |
|- ( ( A e. RR /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
14 |
10 13
|
syl3an2 |
|- ( ( A e. RR /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
15 |
14
|
3expb |
|- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) = A ) |
16 |
15
|
eleq1d |
|- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( A x. B ) / B ) e. QQ <-> A e. QQ ) ) |
17 |
9 16
|
sylibd |
|- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> A e. QQ ) ) |
18 |
17
|
con3d |
|- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) |
19 |
18
|
ex |
|- ( A e. RR -> ( ( B e. QQ /\ B =/= 0 ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) ) |
20 |
19
|
com23 |
|- ( A e. RR -> ( -. A e. QQ -> ( ( B e. QQ /\ B =/= 0 ) -> -. ( A x. B ) e. QQ ) ) ) |
21 |
20
|
imp31 |
|- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> -. ( A x. B ) e. QQ ) |
22 |
5 21
|
jca |
|- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
23 |
22
|
3impb |
|- ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
24 |
1 23
|
syl3an1b |
|- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
25 |
|
eldif |
|- ( ( A x. B ) e. ( RR \ QQ ) <-> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
26 |
24 25
|
sylibr |
|- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( A x. B ) e. ( RR \ QQ ) ) |