| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( A e. ( RR \ QQ ) <-> ( A e. RR /\ -. A e. QQ ) ) | 
						
							| 2 |  | qre |  |-  ( B e. QQ -> B e. RR ) | 
						
							| 3 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( A e. RR /\ B e. QQ ) -> ( A x. B ) e. RR ) | 
						
							| 5 | 4 | ad2ant2r |  |-  ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) | 
						
							| 6 |  | qdivcl |  |-  ( ( ( A x. B ) e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) e. QQ ) | 
						
							| 7 | 6 | 3expb |  |-  ( ( ( A x. B ) e. QQ /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) e. QQ ) | 
						
							| 8 | 7 | expcom |  |-  ( ( B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) | 
						
							| 10 |  | qcn |  |-  ( B e. QQ -> B e. CC ) | 
						
							| 11 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 12 |  | divcan4 |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) | 
						
							| 13 | 11 12 | syl3an1 |  |-  ( ( A e. RR /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) | 
						
							| 14 | 10 13 | syl3an2 |  |-  ( ( A e. RR /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) | 
						
							| 15 | 14 | 3expb |  |-  ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) = A ) | 
						
							| 16 | 15 | eleq1d |  |-  ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( A x. B ) / B ) e. QQ <-> A e. QQ ) ) | 
						
							| 17 | 9 16 | sylibd |  |-  ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> A e. QQ ) ) | 
						
							| 18 | 17 | con3d |  |-  ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) | 
						
							| 19 | 18 | ex |  |-  ( A e. RR -> ( ( B e. QQ /\ B =/= 0 ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) ) | 
						
							| 20 | 19 | com23 |  |-  ( A e. RR -> ( -. A e. QQ -> ( ( B e. QQ /\ B =/= 0 ) -> -. ( A x. B ) e. QQ ) ) ) | 
						
							| 21 | 20 | imp31 |  |-  ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> -. ( A x. B ) e. QQ ) | 
						
							| 22 | 5 21 | jca |  |-  ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) | 
						
							| 23 | 22 | 3impb |  |-  ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) | 
						
							| 24 | 1 23 | syl3an1b |  |-  ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) | 
						
							| 25 |  | eldif |  |-  ( ( A x. B ) e. ( RR \ QQ ) <-> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( A x. B ) e. ( RR \ QQ ) ) |