| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 1fv |  |-  ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( P = { <. 0 , N >. } /\ N e. V ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) | 
						
							| 4 | 3 | simpld |  |-  ( ( P = { <. 0 , N >. } /\ N e. V ) -> P : ( 0 ... 0 ) --> V ) | 
						
							| 5 | 1 | 1vgrex |  |-  ( N e. V -> G e. _V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( P = { <. 0 , N >. } /\ N e. V ) -> G e. _V ) | 
						
							| 7 | 1 | 0wlk |  |-  ( G e. _V -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( P = { <. 0 , N >. } /\ N e. V ) -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 9 | 4 8 | mpbird |  |-  ( ( P = { <. 0 , N >. } /\ N e. V ) -> (/) ( Walks ` G ) P ) |