| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2ndc |  |-  2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } | 
						
							| 2 | 1 | eleq2i |  |-  ( J e. 2ndc <-> J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } ) | 
						
							| 3 |  | simpr |  |-  ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( topGen ` x ) = J ) | 
						
							| 4 |  | fvex |  |-  ( topGen ` x ) e. _V | 
						
							| 5 | 3 4 | eqeltrrdi |  |-  ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) | 
						
							| 6 | 5 | rexlimivw |  |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) | 
						
							| 7 |  | eqeq2 |  |-  ( j = J -> ( ( topGen ` x ) = j <-> ( topGen ` x ) = J ) ) | 
						
							| 8 | 7 | anbi2d |  |-  ( j = J -> ( ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) | 
						
							| 9 | 8 | rexbidv |  |-  ( j = J -> ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) | 
						
							| 10 | 6 9 | elab3 |  |-  ( J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) | 
						
							| 11 | 2 10 | bitri |  |-  ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |