Step |
Hyp |
Ref |
Expression |
1 |
|
df-2ndc |
|- 2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } |
2 |
1
|
eleq2i |
|- ( J e. 2ndc <-> J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } ) |
3 |
|
simpr |
|- ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( topGen ` x ) = J ) |
4 |
|
fvex |
|- ( topGen ` x ) e. _V |
5 |
3 4
|
eqeltrrdi |
|- ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) |
6 |
5
|
rexlimivw |
|- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) |
7 |
|
eqeq2 |
|- ( j = J -> ( ( topGen ` x ) = j <-> ( topGen ` x ) = J ) ) |
8 |
7
|
anbi2d |
|- ( j = J -> ( ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
9 |
8
|
rexbidv |
|- ( j = J -> ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
10 |
6 9
|
elab3 |
|- ( J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
11 |
2 10
|
bitri |
|- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |