Metamath Proof Explorer


Theorem isabld

Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)

Ref Expression
Hypotheses isabld.b
|- ( ph -> B = ( Base ` G ) )
isabld.p
|- ( ph -> .+ = ( +g ` G ) )
isabld.g
|- ( ph -> G e. Grp )
isabld.c
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) )
Assertion isabld
|- ( ph -> G e. Abel )

Proof

Step Hyp Ref Expression
1 isabld.b
 |-  ( ph -> B = ( Base ` G ) )
2 isabld.p
 |-  ( ph -> .+ = ( +g ` G ) )
3 isabld.g
 |-  ( ph -> G e. Grp )
4 isabld.c
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) )
5 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
6 3 5 syl
 |-  ( ph -> G e. Mnd )
7 1 2 6 4 iscmnd
 |-  ( ph -> G e. CMnd )
8 isabl
 |-  ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) )
9 3 7 8 sylanbrc
 |-  ( ph -> G e. Abel )