Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabld.b | |- ( ph -> B = ( Base ` G ) ) |
|
| isabld.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
| isabld.g | |- ( ph -> G e. Grp ) |
||
| isabld.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| Assertion | isabld | |- ( ph -> G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | isabld.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
| 3 | isabld.g | |- ( ph -> G e. Grp ) |
|
| 4 | isabld.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 5 | 3 | grpmndd | |- ( ph -> G e. Mnd ) |
| 6 | 1 2 5 4 | iscmnd | |- ( ph -> G e. CMnd ) |
| 7 | isabl | |- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
|
| 8 | 3 6 7 | sylanbrc | |- ( ph -> G e. Abel ) |