Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isabli.g | |- G e. Grp |
|
isabli.b | |- B = ( Base ` G ) |
||
isabli.p | |- .+ = ( +g ` G ) |
||
isabli.c | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
||
Assertion | isabli | |- G e. Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | |- G e. Grp |
|
2 | isabli.b | |- B = ( Base ` G ) |
|
3 | isabli.p | |- .+ = ( +g ` G ) |
|
4 | isabli.c | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) |
|
5 | 4 | rgen2 | |- A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) |
6 | 2 3 | isabl2 | |- ( G e. Abel <-> ( G e. Grp /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
7 | 1 5 6 | mpbir2an | |- G e. Abel |