Metamath Proof Explorer


Theorem isabloi

Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses isabli.1
|- G e. GrpOp
isabli.2
|- dom G = ( X X. X )
isabli.3
|- ( ( x e. X /\ y e. X ) -> ( x G y ) = ( y G x ) )
Assertion isabloi
|- G e. AbelOp

Proof

Step Hyp Ref Expression
1 isabli.1
 |-  G e. GrpOp
2 isabli.2
 |-  dom G = ( X X. X )
3 isabli.3
 |-  ( ( x e. X /\ y e. X ) -> ( x G y ) = ( y G x ) )
4 3 rgen2
 |-  A. x e. X A. y e. X ( x G y ) = ( y G x )
5 1 2 grporn
 |-  X = ran G
6 5 isablo
 |-  ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) )
7 1 4 6 mpbir2an
 |-  G e. AbelOp