Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabli.1 | |- G e. GrpOp |
|
| isabli.2 | |- dom G = ( X X. X ) |
||
| isabli.3 | |- ( ( x e. X /\ y e. X ) -> ( x G y ) = ( y G x ) ) |
||
| Assertion | isabloi | |- G e. AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabli.1 | |- G e. GrpOp |
|
| 2 | isabli.2 | |- dom G = ( X X. X ) |
|
| 3 | isabli.3 | |- ( ( x e. X /\ y e. X ) -> ( x G y ) = ( y G x ) ) |
|
| 4 | 3 | rgen2 | |- A. x e. X A. y e. X ( x G y ) = ( y G x ) |
| 5 | 1 2 | grporn | |- X = ran G |
| 6 | 5 | isablo | |- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
| 7 | 1 4 6 | mpbir2an | |- G e. AbelOp |