Step |
Hyp |
Ref |
Expression |
1 |
|
isabvd.a |
|- ( ph -> A = ( AbsVal ` R ) ) |
2 |
|
isabvd.b |
|- ( ph -> B = ( Base ` R ) ) |
3 |
|
isabvd.p |
|- ( ph -> .+ = ( +g ` R ) ) |
4 |
|
isabvd.t |
|- ( ph -> .x. = ( .r ` R ) ) |
5 |
|
isabvd.z |
|- ( ph -> .0. = ( 0g ` R ) ) |
6 |
|
isabvd.1 |
|- ( ph -> R e. Ring ) |
7 |
|
isabvd.2 |
|- ( ph -> F : B --> RR ) |
8 |
|
isabvd.3 |
|- ( ph -> ( F ` .0. ) = 0 ) |
9 |
|
isabvd.4 |
|- ( ( ph /\ x e. B /\ x =/= .0. ) -> 0 < ( F ` x ) ) |
10 |
|
isabvd.5 |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
11 |
|
isabvd.6 |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
12 |
2
|
feq2d |
|- ( ph -> ( F : B --> RR <-> F : ( Base ` R ) --> RR ) ) |
13 |
7 12
|
mpbid |
|- ( ph -> F : ( Base ` R ) --> RR ) |
14 |
13
|
ffnd |
|- ( ph -> F Fn ( Base ` R ) ) |
15 |
13
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
16 |
|
0le0 |
|- 0 <_ 0 |
17 |
5
|
fveq2d |
|- ( ph -> ( F ` .0. ) = ( F ` ( 0g ` R ) ) ) |
18 |
17 8
|
eqtr3d |
|- ( ph -> ( F ` ( 0g ` R ) ) = 0 ) |
19 |
16 18
|
breqtrrid |
|- ( ph -> 0 <_ ( F ` ( 0g ` R ) ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` ( 0g ` R ) ) ) |
21 |
|
fveq2 |
|- ( x = ( 0g ` R ) -> ( F ` x ) = ( F ` ( 0g ` R ) ) ) |
22 |
21
|
breq2d |
|- ( x = ( 0g ` R ) -> ( 0 <_ ( F ` x ) <-> 0 <_ ( F ` ( 0g ` R ) ) ) ) |
23 |
20 22
|
syl5ibrcom |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
24 |
|
simp1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ph ) |
25 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
26 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> B = ( Base ` R ) ) |
27 |
25 26
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. B ) |
28 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
29 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> .0. = ( 0g ` R ) ) |
30 |
28 29
|
neeqtrrd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= .0. ) |
31 |
24 27 30 9
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
32 |
|
0re |
|- 0 e. RR |
33 |
15
|
3adant3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) e. RR ) |
34 |
|
ltle |
|- ( ( 0 e. RR /\ ( F ` x ) e. RR ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
35 |
32 33 34
|
sylancr |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
36 |
31 35
|
mpd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
37 |
36
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
38 |
23 37
|
pm2.61dne |
|- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` x ) ) |
39 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
40 |
15 38 39
|
sylanbrc |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
41 |
40
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) |
42 |
|
ffnfv |
|- ( F : ( Base ` R ) --> ( 0 [,) +oo ) <-> ( F Fn ( Base ` R ) /\ A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) ) |
43 |
14 41 42
|
sylanbrc |
|- ( ph -> F : ( Base ` R ) --> ( 0 [,) +oo ) ) |
44 |
31
|
gt0ne0d |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) =/= 0 ) |
45 |
44
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> ( F ` x ) =/= 0 ) ) |
46 |
45
|
necon4d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 -> x = ( 0g ` R ) ) ) |
47 |
18
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
48 |
|
fveqeq2 |
|- ( x = ( 0g ` R ) -> ( ( F ` x ) = 0 <-> ( F ` ( 0g ` R ) ) = 0 ) ) |
49 |
47 48
|
syl5ibrcom |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> ( F ` x ) = 0 ) ) |
50 |
46 49
|
impbid |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) ) |
51 |
18
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
52 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
53 |
|
oveq1 |
|- ( x = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( ( 0g ` R ) ( .r ` R ) y ) ) |
54 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
55 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
56 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
57 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
59 |
56 57 58
|
ringlz |
|- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
60 |
54 55 59
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
61 |
53 60
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
62 |
61
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
63 |
21 51
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` x ) = 0 ) |
64 |
63
|
oveq1d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( 0 x. ( F ` y ) ) ) |
65 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> F : ( Base ` R ) --> RR ) |
66 |
65 55
|
ffvelrnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. RR ) |
67 |
66
|
recnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. CC ) |
68 |
67
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) e. CC ) |
69 |
68
|
mul02d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 x. ( F ` y ) ) = 0 ) |
70 |
64 69
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
71 |
52 62 70
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
72 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
73 |
|
oveq2 |
|- ( y = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
74 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
75 |
56 57 58
|
ringrz |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
76 |
54 74 75
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
77 |
73 76
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
78 |
77
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
79 |
|
fveq2 |
|- ( y = ( 0g ` R ) -> ( F ` y ) = ( F ` ( 0g ` R ) ) ) |
80 |
79 51
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` y ) = 0 ) |
81 |
80
|
oveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) x. 0 ) ) |
82 |
65 74
|
ffvelrnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
83 |
82
|
recnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. CC ) |
84 |
83
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) e. CC ) |
85 |
84
|
mul01d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. 0 ) = 0 ) |
86 |
81 85
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
87 |
72 78 86
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
88 |
|
simpl1 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ph ) |
89 |
88 4
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .x. = ( .r ` R ) ) |
90 |
89
|
oveqd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
91 |
90
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
92 |
|
simpl2 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
93 |
88 2
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> B = ( Base ` R ) ) |
94 |
92 93
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. B ) |
95 |
|
simprl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= ( 0g ` R ) ) |
96 |
88 5
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .0. = ( 0g ` R ) ) |
97 |
95 96
|
neeqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= .0. ) |
98 |
|
simpl3 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
99 |
98 93
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. B ) |
100 |
|
simprr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= ( 0g ` R ) ) |
101 |
100 96
|
neeqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= .0. ) |
102 |
88 94 97 99 101 10
|
syl122anc |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
103 |
91 102
|
eqtr3d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
104 |
71 87 103
|
pm2.61da2ne |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
105 |
|
oveq1 |
|- ( x = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( ( 0g ` R ) ( +g ` R ) y ) ) |
106 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
107 |
54 106
|
syl |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Grp ) |
108 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
109 |
56 108 58
|
grplid |
|- ( ( R e. Grp /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
110 |
107 55 109
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
111 |
105 110
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = y ) |
112 |
111
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` y ) ) |
113 |
16 63
|
breqtrrid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
114 |
66 82
|
addge02d |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
115 |
114
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
116 |
113 115
|
mpbid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
117 |
112 116
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
118 |
|
oveq2 |
|- ( y = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( x ( +g ` R ) ( 0g ` R ) ) ) |
119 |
56 108 58
|
grprid |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
120 |
107 74 119
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
121 |
118 120
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = x ) |
122 |
121
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` x ) ) |
123 |
16 80
|
breqtrrid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> 0 <_ ( F ` y ) ) |
124 |
82 66
|
addge01d |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
125 |
124
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
126 |
123 125
|
mpbid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
127 |
122 126
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
128 |
88 3
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .+ = ( +g ` R ) ) |
129 |
128
|
oveqd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
130 |
129
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
131 |
88 94 97 99 101 11
|
syl122anc |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
132 |
130 131
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
133 |
117 127 132
|
pm2.61da2ne |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
134 |
104 133
|
jca |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
135 |
134
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( y e. ( Base ` R ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
136 |
135
|
ralrimiv |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
137 |
50 136
|
jca |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
138 |
137
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
139 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
140 |
139 56 108 57 58
|
isabv |
|- ( R e. Ring -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
141 |
6 140
|
syl |
|- ( ph -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
142 |
43 138 141
|
mpbir2and |
|- ( ph -> F e. ( AbsVal ` R ) ) |
143 |
142 1
|
eleqtrrd |
|- ( ph -> F e. A ) |