| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isabvd.a |
|- ( ph -> A = ( AbsVal ` R ) ) |
| 2 |
|
isabvd.b |
|- ( ph -> B = ( Base ` R ) ) |
| 3 |
|
isabvd.p |
|- ( ph -> .+ = ( +g ` R ) ) |
| 4 |
|
isabvd.t |
|- ( ph -> .x. = ( .r ` R ) ) |
| 5 |
|
isabvd.z |
|- ( ph -> .0. = ( 0g ` R ) ) |
| 6 |
|
isabvd.1 |
|- ( ph -> R e. Ring ) |
| 7 |
|
isabvd.2 |
|- ( ph -> F : B --> RR ) |
| 8 |
|
isabvd.3 |
|- ( ph -> ( F ` .0. ) = 0 ) |
| 9 |
|
isabvd.4 |
|- ( ( ph /\ x e. B /\ x =/= .0. ) -> 0 < ( F ` x ) ) |
| 10 |
|
isabvd.5 |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 11 |
|
isabvd.6 |
|- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 12 |
2
|
feq2d |
|- ( ph -> ( F : B --> RR <-> F : ( Base ` R ) --> RR ) ) |
| 13 |
7 12
|
mpbid |
|- ( ph -> F : ( Base ` R ) --> RR ) |
| 14 |
13
|
ffnd |
|- ( ph -> F Fn ( Base ` R ) ) |
| 15 |
13
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
| 16 |
|
0le0 |
|- 0 <_ 0 |
| 17 |
5
|
fveq2d |
|- ( ph -> ( F ` .0. ) = ( F ` ( 0g ` R ) ) ) |
| 18 |
17 8
|
eqtr3d |
|- ( ph -> ( F ` ( 0g ` R ) ) = 0 ) |
| 19 |
16 18
|
breqtrrid |
|- ( ph -> 0 <_ ( F ` ( 0g ` R ) ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` ( 0g ` R ) ) ) |
| 21 |
|
fveq2 |
|- ( x = ( 0g ` R ) -> ( F ` x ) = ( F ` ( 0g ` R ) ) ) |
| 22 |
21
|
breq2d |
|- ( x = ( 0g ` R ) -> ( 0 <_ ( F ` x ) <-> 0 <_ ( F ` ( 0g ` R ) ) ) ) |
| 23 |
20 22
|
syl5ibrcom |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
| 24 |
|
simp1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ph ) |
| 25 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
| 26 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> B = ( Base ` R ) ) |
| 27 |
25 26
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x e. B ) |
| 28 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
| 29 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> .0. = ( 0g ` R ) ) |
| 30 |
28 29
|
neeqtrrd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> x =/= .0. ) |
| 31 |
24 27 30 9
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 32 |
|
0re |
|- 0 e. RR |
| 33 |
15
|
3adant3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) e. RR ) |
| 34 |
|
ltle |
|- ( ( 0 e. RR /\ ( F ` x ) e. RR ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
| 35 |
32 33 34
|
sylancr |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( 0 < ( F ` x ) -> 0 <_ ( F ` x ) ) ) |
| 36 |
31 35
|
mpd |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
| 37 |
36
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> 0 <_ ( F ` x ) ) ) |
| 38 |
23 37
|
pm2.61dne |
|- ( ( ph /\ x e. ( Base ` R ) ) -> 0 <_ ( F ` x ) ) |
| 39 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 40 |
15 38 39
|
sylanbrc |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 41 |
40
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) |
| 42 |
|
ffnfv |
|- ( F : ( Base ` R ) --> ( 0 [,) +oo ) <-> ( F Fn ( Base ` R ) /\ A. x e. ( Base ` R ) ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 43 |
14 41 42
|
sylanbrc |
|- ( ph -> F : ( Base ` R ) --> ( 0 [,) +oo ) ) |
| 44 |
31
|
gt0ne0d |
|- ( ( ph /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> ( F ` x ) =/= 0 ) |
| 45 |
44
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x =/= ( 0g ` R ) -> ( F ` x ) =/= 0 ) ) |
| 46 |
45
|
necon4d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 -> x = ( 0g ` R ) ) ) |
| 47 |
18
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 48 |
|
fveqeq2 |
|- ( x = ( 0g ` R ) -> ( ( F ` x ) = 0 <-> ( F ` ( 0g ` R ) ) = 0 ) ) |
| 49 |
47 48
|
syl5ibrcom |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x = ( 0g ` R ) -> ( F ` x ) = 0 ) ) |
| 50 |
46 49
|
impbid |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) ) |
| 51 |
18
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 52 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 53 |
|
oveq1 |
|- ( x = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( ( 0g ` R ) ( .r ` R ) y ) ) |
| 54 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
| 55 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
| 56 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 57 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 59 |
56 57 58
|
ringlz |
|- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
| 60 |
54 55 59
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
| 61 |
53 60
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
| 62 |
61
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
| 63 |
21 51
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` x ) = 0 ) |
| 64 |
63
|
oveq1d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( 0 x. ( F ` y ) ) ) |
| 65 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> F : ( Base ` R ) --> RR ) |
| 66 |
65 55
|
ffvelcdmd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. RR ) |
| 67 |
66
|
recnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` y ) e. CC ) |
| 68 |
67
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) e. CC ) |
| 69 |
68
|
mul02d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 x. ( F ` y ) ) = 0 ) |
| 70 |
64 69
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
| 71 |
52 62 70
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 72 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 73 |
|
oveq2 |
|- ( y = ( 0g ` R ) -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
| 74 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
| 75 |
56 57 58
|
ringrz |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 76 |
54 74 75
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 77 |
73 76
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( F ` ( 0g ` R ) ) ) |
| 79 |
|
fveq2 |
|- ( y = ( 0g ` R ) -> ( F ` y ) = ( F ` ( 0g ` R ) ) ) |
| 80 |
79 51
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` y ) = 0 ) |
| 81 |
80
|
oveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) x. 0 ) ) |
| 82 |
65 74
|
ffvelcdmd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. RR ) |
| 83 |
82
|
recnd |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` x ) e. CC ) |
| 84 |
83
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) e. CC ) |
| 85 |
84
|
mul01d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. 0 ) = 0 ) |
| 86 |
81 85
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( ( F ` x ) x. ( F ` y ) ) = 0 ) |
| 87 |
72 78 86
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 88 |
|
simpl1 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ph ) |
| 89 |
88 4
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .x. = ( .r ` R ) ) |
| 90 |
89
|
oveqd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 91 |
90
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
| 92 |
|
simpl2 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
| 93 |
88 2
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> B = ( Base ` R ) ) |
| 94 |
92 93
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x e. B ) |
| 95 |
|
simprl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= ( 0g ` R ) ) |
| 96 |
88 5
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .0. = ( 0g ` R ) ) |
| 97 |
95 96
|
neeqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> x =/= .0. ) |
| 98 |
|
simpl3 |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
| 99 |
98 93
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y e. B ) |
| 100 |
|
simprr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= ( 0g ` R ) ) |
| 101 |
100 96
|
neeqtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> y =/= .0. ) |
| 102 |
88 94 97 99 101 10
|
syl122anc |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 103 |
91 102
|
eqtr3d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 104 |
71 87 103
|
pm2.61da2ne |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 105 |
|
oveq1 |
|- ( x = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( ( 0g ` R ) ( +g ` R ) y ) ) |
| 106 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 107 |
54 106
|
syl |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> R e. Grp ) |
| 108 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 109 |
56 108 58
|
grplid |
|- ( ( R e. Grp /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
| 110 |
107 55 109
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) y ) = y ) |
| 111 |
105 110
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = y ) |
| 112 |
111
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` y ) ) |
| 113 |
16 63
|
breqtrrid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> 0 <_ ( F ` x ) ) |
| 114 |
66 82
|
addge02d |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 115 |
114
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( 0 <_ ( F ` x ) <-> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 116 |
113 115
|
mpbid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` y ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 117 |
112 116
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ x = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 118 |
|
oveq2 |
|- ( y = ( 0g ` R ) -> ( x ( +g ` R ) y ) = ( x ( +g ` R ) ( 0g ` R ) ) ) |
| 119 |
56 108 58
|
grprid |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 120 |
107 74 119
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 121 |
118 120
|
sylan9eqr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( x ( +g ` R ) y ) = x ) |
| 122 |
121
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( F ` x ) ) |
| 123 |
16 80
|
breqtrrid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> 0 <_ ( F ` y ) ) |
| 124 |
82 66
|
addge01d |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 125 |
124
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( 0 <_ ( F ` y ) <-> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 126 |
123 125
|
mpbid |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` x ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 127 |
122 126
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ y = ( 0g ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 128 |
88 3
|
syl |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> .+ = ( +g ` R ) ) |
| 129 |
128
|
oveqd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 130 |
129
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 131 |
88 94 97 99 101 11
|
syl122anc |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x .+ y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 132 |
130 131
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x =/= ( 0g ` R ) /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 133 |
117 127 132
|
pm2.61da2ne |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 134 |
104 133
|
jca |
|- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 135 |
134
|
3expia |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( y e. ( Base ` R ) -> ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 136 |
135
|
ralrimiv |
|- ( ( ph /\ x e. ( Base ` R ) ) -> A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) |
| 137 |
50 136
|
jca |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 138 |
137
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) |
| 139 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
| 140 |
139 56 108 57 58
|
isabv |
|- ( R e. Ring -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 141 |
6 140
|
syl |
|- ( ph -> ( F e. ( AbsVal ` R ) <-> ( F : ( Base ` R ) --> ( 0 [,) +oo ) /\ A. x e. ( Base ` R ) ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. ( Base ` R ) ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 142 |
43 138 141
|
mpbir2and |
|- ( ph -> F e. ( AbsVal ` R ) ) |
| 143 |
142 1
|
eleqtrrd |
|- ( ph -> F e. A ) |