| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 |  |-  { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } C_ ~P X | 
						
							| 2 | 1 | a1i |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } C_ ~P X ) | 
						
							| 3 |  | pweq |  |-  ( s = ( X i^i |^| t ) -> ~P s = ~P ( X i^i |^| t ) ) | 
						
							| 4 | 3 | ineq1d |  |-  ( s = ( X i^i |^| t ) -> ( ~P s i^i Fin ) = ( ~P ( X i^i |^| t ) i^i Fin ) ) | 
						
							| 5 | 4 | imaeq2d |  |-  ( s = ( X i^i |^| t ) -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) ) | 
						
							| 6 | 5 | unieqd |  |-  ( s = ( X i^i |^| t ) -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) ) | 
						
							| 7 |  | id |  |-  ( s = ( X i^i |^| t ) -> s = ( X i^i |^| t ) ) | 
						
							| 8 | 6 7 | sseq12d |  |-  ( s = ( X i^i |^| t ) -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( X i^i |^| t ) ) ) | 
						
							| 9 |  | inss1 |  |-  ( X i^i |^| t ) C_ X | 
						
							| 10 |  | elpw2g |  |-  ( X e. V -> ( ( X i^i |^| t ) e. ~P X <-> ( X i^i |^| t ) C_ X ) ) | 
						
							| 11 | 9 10 | mpbiri |  |-  ( X e. V -> ( X i^i |^| t ) e. ~P X ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> ( X i^i |^| t ) e. ~P X ) | 
						
							| 13 |  | imassrn |  |-  ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ran F | 
						
							| 14 |  | frn |  |-  ( F : ~P X --> ~P X -> ran F C_ ~P X ) | 
						
							| 15 | 14 | adantl |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> ran F C_ ~P X ) | 
						
							| 16 | 13 15 | sstrid |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ~P X ) | 
						
							| 17 | 16 | unissd |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ U. ~P X ) | 
						
							| 18 |  | unipw |  |-  U. ~P X = X | 
						
							| 19 | 17 18 | sseqtrdi |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ X ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ X ) | 
						
							| 21 |  | inss2 |  |-  ( X i^i |^| t ) C_ |^| t | 
						
							| 22 |  | intss1 |  |-  ( a e. t -> |^| t C_ a ) | 
						
							| 23 | 21 22 | sstrid |  |-  ( a e. t -> ( X i^i |^| t ) C_ a ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( X i^i |^| t ) C_ a ) | 
						
							| 25 | 24 | sspwd |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ~P ( X i^i |^| t ) C_ ~P a ) | 
						
							| 26 | 25 | ssrind |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( ~P ( X i^i |^| t ) i^i Fin ) C_ ( ~P a i^i Fin ) ) | 
						
							| 27 |  | imass2 |  |-  ( ( ~P ( X i^i |^| t ) i^i Fin ) C_ ( ~P a i^i Fin ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( F " ( ~P a i^i Fin ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( F " ( ~P a i^i Fin ) ) ) | 
						
							| 29 | 28 | unissd |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ U. ( F " ( ~P a i^i Fin ) ) ) | 
						
							| 30 |  | ssel2 |  |-  ( ( t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } /\ a e. t ) -> a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) | 
						
							| 31 |  | pweq |  |-  ( s = a -> ~P s = ~P a ) | 
						
							| 32 | 31 | ineq1d |  |-  ( s = a -> ( ~P s i^i Fin ) = ( ~P a i^i Fin ) ) | 
						
							| 33 | 32 | imaeq2d |  |-  ( s = a -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P a i^i Fin ) ) ) | 
						
							| 34 | 33 | unieqd |  |-  ( s = a -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P a i^i Fin ) ) ) | 
						
							| 35 |  | id |  |-  ( s = a -> s = a ) | 
						
							| 36 | 34 35 | sseq12d |  |-  ( s = a -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P a i^i Fin ) ) C_ a ) ) | 
						
							| 37 | 36 | elrab |  |-  ( a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> ( a e. ~P X /\ U. ( F " ( ~P a i^i Fin ) ) C_ a ) ) | 
						
							| 38 | 37 | simprbi |  |-  ( a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) | 
						
							| 39 | 30 38 | syl |  |-  ( ( t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } /\ a e. t ) -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) | 
						
							| 40 | 39 | adantll |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) | 
						
							| 41 | 29 40 | sstrd |  |-  ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) | 
						
							| 42 | 41 | ralrimiva |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> A. a e. t U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) | 
						
							| 43 |  | ssint |  |-  ( U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ |^| t <-> A. a e. t U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) | 
						
							| 44 | 42 43 | sylibr |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ |^| t ) | 
						
							| 45 | 20 44 | ssind |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( X i^i |^| t ) ) | 
						
							| 46 | 8 12 45 | elrabd |  |-  ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> ( X i^i |^| t ) e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) | 
						
							| 47 | 2 46 | ismred2 |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( Moore ` X ) ) | 
						
							| 48 |  | fssxp |  |-  ( F : ~P X --> ~P X -> F C_ ( ~P X X. ~P X ) ) | 
						
							| 49 |  | pwexg |  |-  ( X e. V -> ~P X e. _V ) | 
						
							| 50 | 49 49 | xpexd |  |-  ( X e. V -> ( ~P X X. ~P X ) e. _V ) | 
						
							| 51 |  | ssexg |  |-  ( ( F C_ ( ~P X X. ~P X ) /\ ( ~P X X. ~P X ) e. _V ) -> F e. _V ) | 
						
							| 52 | 48 50 51 | syl2anr |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> F e. _V ) | 
						
							| 53 |  | simpr |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> F : ~P X --> ~P X ) | 
						
							| 54 |  | pweq |  |-  ( s = t -> ~P s = ~P t ) | 
						
							| 55 | 54 | ineq1d |  |-  ( s = t -> ( ~P s i^i Fin ) = ( ~P t i^i Fin ) ) | 
						
							| 56 | 55 | imaeq2d |  |-  ( s = t -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P t i^i Fin ) ) ) | 
						
							| 57 | 56 | unieqd |  |-  ( s = t -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P t i^i Fin ) ) ) | 
						
							| 58 |  | id |  |-  ( s = t -> s = t ) | 
						
							| 59 | 57 58 | sseq12d |  |-  ( s = t -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) | 
						
							| 60 | 59 | elrab3 |  |-  ( t e. ~P X -> ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) | 
						
							| 61 | 60 | rgen |  |-  A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) | 
						
							| 62 | 53 61 | jctir |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> ( F : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) | 
						
							| 63 |  | feq1 |  |-  ( f = F -> ( f : ~P X --> ~P X <-> F : ~P X --> ~P X ) ) | 
						
							| 64 |  | imaeq1 |  |-  ( f = F -> ( f " ( ~P t i^i Fin ) ) = ( F " ( ~P t i^i Fin ) ) ) | 
						
							| 65 | 64 | unieqd |  |-  ( f = F -> U. ( f " ( ~P t i^i Fin ) ) = U. ( F " ( ~P t i^i Fin ) ) ) | 
						
							| 66 | 65 | sseq1d |  |-  ( f = F -> ( U. ( f " ( ~P t i^i Fin ) ) C_ t <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) | 
						
							| 67 | 66 | bibi2d |  |-  ( f = F -> ( ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) <-> ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) | 
						
							| 68 | 67 | ralbidv |  |-  ( f = F -> ( A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) <-> A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) | 
						
							| 69 | 63 68 | anbi12d |  |-  ( f = F -> ( ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) <-> ( F : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) ) | 
						
							| 70 | 52 62 69 | spcedv |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> E. f ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) ) | 
						
							| 71 |  | isacs |  |-  ( { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( ACS ` X ) <-> ( { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) ) ) | 
						
							| 72 | 47 70 71 | sylanbrc |  |-  ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( ACS ` X ) ) |