Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- b e. _V |
2 |
1
|
elima |
|- ( b e. ( { <. x , y >. | ph } " A ) <-> E. z e. A z { <. x , y >. | ph } b ) |
3 |
|
df-br |
|- ( z { <. x , y >. | ph } b <-> <. z , b >. e. { <. x , y >. | ph } ) |
4 |
|
opelopabsb |
|- ( <. z , b >. e. { <. x , y >. | ph } <-> [. z / x ]. [. b / y ]. ph ) |
5 |
|
sbsbc |
|- ( [ b / y ] ph <-> [. b / y ]. ph ) |
6 |
5
|
sbbii |
|- ( [ z / x ] [ b / y ] ph <-> [ z / x ] [. b / y ]. ph ) |
7 |
|
sbsbc |
|- ( [ z / x ] [. b / y ]. ph <-> [. z / x ]. [. b / y ]. ph ) |
8 |
6 7
|
bitr2i |
|- ( [. z / x ]. [. b / y ]. ph <-> [ z / x ] [ b / y ] ph ) |
9 |
3 4 8
|
3bitri |
|- ( z { <. x , y >. | ph } b <-> [ z / x ] [ b / y ] ph ) |
10 |
9
|
rexbii |
|- ( E. z e. A z { <. x , y >. | ph } b <-> E. z e. A [ z / x ] [ b / y ] ph ) |
11 |
|
nfs1v |
|- F/ x [ z / x ] [ b / y ] ph |
12 |
|
nfv |
|- F/ z [ b / y ] ph |
13 |
|
sbequ12r |
|- ( z = x -> ( [ z / x ] [ b / y ] ph <-> [ b / y ] ph ) ) |
14 |
11 12 13
|
cbvrexw |
|- ( E. z e. A [ z / x ] [ b / y ] ph <-> E. x e. A [ b / y ] ph ) |
15 |
2 10 14
|
3bitri |
|- ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph ) |