| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- b e. _V |
| 2 |
1
|
elima |
|- ( b e. ( { <. x , y >. | ph } " A ) <-> E. z e. A z { <. x , y >. | ph } b ) |
| 3 |
|
df-br |
|- ( z { <. x , y >. | ph } b <-> <. z , b >. e. { <. x , y >. | ph } ) |
| 4 |
|
vopelopabsb |
|- ( <. z , b >. e. { <. x , y >. | ph } <-> [ z / x ] [ b / y ] ph ) |
| 5 |
3 4
|
bitri |
|- ( z { <. x , y >. | ph } b <-> [ z / x ] [ b / y ] ph ) |
| 6 |
5
|
rexbii |
|- ( E. z e. A z { <. x , y >. | ph } b <-> E. z e. A [ z / x ] [ b / y ] ph ) |
| 7 |
|
nfs1v |
|- F/ x [ z / x ] [ b / y ] ph |
| 8 |
|
nfv |
|- F/ z [ b / y ] ph |
| 9 |
|
sbequ12r |
|- ( z = x -> ( [ z / x ] [ b / y ] ph <-> [ b / y ] ph ) ) |
| 10 |
7 8 9
|
cbvrexw |
|- ( E. z e. A [ z / x ] [ b / y ] ph <-> E. x e. A [ b / y ] ph ) |
| 11 |
2 6 10
|
3bitri |
|- ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph ) |