Metamath Proof Explorer


Theorem isarep1OLD

Description: Obsolete version of isarep1 as of 19-Dec-2024. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isarep1OLD
|- ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph )

Proof

Step Hyp Ref Expression
1 vex
 |-  b e. _V
2 1 elima
 |-  ( b e. ( { <. x , y >. | ph } " A ) <-> E. z e. A z { <. x , y >. | ph } b )
3 df-br
 |-  ( z { <. x , y >. | ph } b <-> <. z , b >. e. { <. x , y >. | ph } )
4 opelopabsb
 |-  ( <. z , b >. e. { <. x , y >. | ph } <-> [. z / x ]. [. b / y ]. ph )
5 sbsbc
 |-  ( [ b / y ] ph <-> [. b / y ]. ph )
6 5 sbbii
 |-  ( [ z / x ] [ b / y ] ph <-> [ z / x ] [. b / y ]. ph )
7 sbsbc
 |-  ( [ z / x ] [. b / y ]. ph <-> [. z / x ]. [. b / y ]. ph )
8 6 7 bitr2i
 |-  ( [. z / x ]. [. b / y ]. ph <-> [ z / x ] [ b / y ] ph )
9 3 4 8 3bitri
 |-  ( z { <. x , y >. | ph } b <-> [ z / x ] [ b / y ] ph )
10 9 rexbii
 |-  ( E. z e. A z { <. x , y >. | ph } b <-> E. z e. A [ z / x ] [ b / y ] ph )
11 nfs1v
 |-  F/ x [ z / x ] [ b / y ] ph
12 nfv
 |-  F/ z [ b / y ] ph
13 sbequ12r
 |-  ( z = x -> ( [ z / x ] [ b / y ] ph <-> [ b / y ] ph ) )
14 11 12 13 cbvrexw
 |-  ( E. z e. A [ z / x ] [ b / y ] ph <-> E. x e. A [ b / y ] ph )
15 2 10 14 3bitri
 |-  ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph )