| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isarep2.1 |
|- A e. _V |
| 2 |
|
isarep2.2 |
|- A. x e. A A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) |
| 3 |
|
resima |
|- ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ph } " A ) |
| 4 |
|
resopab |
|- ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } |
| 5 |
4
|
imaeq1i |
|- ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) |
| 6 |
3 5
|
eqtr3i |
|- ( { <. x , y >. | ph } " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) |
| 7 |
|
funopab |
|- ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) ) |
| 8 |
2
|
rspec |
|- ( x e. A -> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) |
| 9 |
|
nfv |
|- F/ z ph |
| 10 |
9
|
mo3 |
|- ( E* y ph <-> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) |
| 11 |
8 10
|
sylibr |
|- ( x e. A -> E* y ph ) |
| 12 |
|
moanimv |
|- ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) ) |
| 13 |
11 12
|
mpbir |
|- E* y ( x e. A /\ ph ) |
| 14 |
7 13
|
mpgbir |
|- Fun { <. x , y >. | ( x e. A /\ ph ) } |
| 15 |
1
|
funimaex |
|- ( Fun { <. x , y >. | ( x e. A /\ ph ) } -> ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V ) |
| 16 |
14 15
|
ax-mp |
|- ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V |
| 17 |
6 16
|
eqeltri |
|- ( { <. x , y >. | ph } " A ) e. _V |
| 18 |
17
|
isseti |
|- E. w w = ( { <. x , y >. | ph } " A ) |