Step |
Hyp |
Ref |
Expression |
1 |
|
isassa.v |
|- V = ( Base ` W ) |
2 |
|
isassa.f |
|- F = ( Scalar ` W ) |
3 |
|
isassa.b |
|- B = ( Base ` F ) |
4 |
|
isassa.s |
|- .x. = ( .s ` W ) |
5 |
|
isassa.t |
|- .X. = ( .r ` W ) |
6 |
|
fvexd |
|- ( w = W -> ( Scalar ` w ) e. _V ) |
7 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
8 |
7 2
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
9 |
|
simpr |
|- ( ( w = W /\ f = F ) -> f = F ) |
10 |
9
|
eleq1d |
|- ( ( w = W /\ f = F ) -> ( f e. CRing <-> F e. CRing ) ) |
11 |
9
|
fveq2d |
|- ( ( w = W /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
12 |
11 3
|
eqtr4di |
|- ( ( w = W /\ f = F ) -> ( Base ` f ) = B ) |
13 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
14 |
13 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
15 |
|
fvexd |
|- ( w = W -> ( .s ` w ) e. _V ) |
16 |
|
fvexd |
|- ( ( w = W /\ s = ( .s ` w ) ) -> ( .r ` w ) e. _V ) |
17 |
|
simpr |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> t = ( .r ` w ) ) |
18 |
|
fveq2 |
|- ( w = W -> ( .r ` w ) = ( .r ` W ) ) |
19 |
18
|
ad2antrr |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( .r ` w ) = ( .r ` W ) ) |
20 |
19 5
|
eqtr4di |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( .r ` w ) = .X. ) |
21 |
17 20
|
eqtrd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> t = .X. ) |
22 |
|
simplr |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> s = ( .s ` w ) ) |
23 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( .s ` w ) = ( .s ` W ) ) |
25 |
24 4
|
eqtr4di |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( .s ` w ) = .x. ) |
26 |
22 25
|
eqtrd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> s = .x. ) |
27 |
26
|
oveqd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( r s x ) = ( r .x. x ) ) |
28 |
|
eqidd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> y = y ) |
29 |
21 27 28
|
oveq123d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( ( r s x ) t y ) = ( ( r .x. x ) .X. y ) ) |
30 |
|
eqidd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> r = r ) |
31 |
21
|
oveqd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( x t y ) = ( x .X. y ) ) |
32 |
26 30 31
|
oveq123d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( r s ( x t y ) ) = ( r .x. ( x .X. y ) ) ) |
33 |
29 32
|
eqeq12d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( ( ( r s x ) t y ) = ( r s ( x t y ) ) <-> ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) ) ) |
34 |
|
eqidd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> x = x ) |
35 |
26
|
oveqd |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( r s y ) = ( r .x. y ) ) |
36 |
21 34 35
|
oveq123d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( x t ( r s y ) ) = ( x .X. ( r .x. y ) ) ) |
37 |
36 32
|
eqeq12d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( ( x t ( r s y ) ) = ( r s ( x t y ) ) <-> ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
38 |
33 37
|
anbi12d |
|- ( ( ( w = W /\ s = ( .s ` w ) ) /\ t = ( .r ` w ) ) -> ( ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
39 |
16 38
|
sbcied |
|- ( ( w = W /\ s = ( .s ` w ) ) -> ( [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
40 |
15 39
|
sbcied |
|- ( w = W -> ( [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
41 |
14 40
|
raleqbidv |
|- ( w = W -> ( A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
42 |
14 41
|
raleqbidv |
|- ( w = W -> ( A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
43 |
42
|
adantr |
|- ( ( w = W /\ f = F ) -> ( A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
44 |
12 43
|
raleqbidv |
|- ( ( w = W /\ f = F ) -> ( A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) <-> A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
45 |
10 44
|
anbi12d |
|- ( ( w = W /\ f = F ) -> ( ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) <-> ( F e. CRing /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) ) |
46 |
6 8 45
|
sbcied2 |
|- ( w = W -> ( [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) <-> ( F e. CRing /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) ) |
47 |
|
df-assa |
|- AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) } |
48 |
46 47
|
elrab2 |
|- ( W e. AssAlg <-> ( W e. ( LMod i^i Ring ) /\ ( F e. CRing /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) ) |
49 |
|
anass |
|- ( ( ( W e. ( LMod i^i Ring ) /\ F e. CRing ) /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) <-> ( W e. ( LMod i^i Ring ) /\ ( F e. CRing /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) ) |
50 |
|
elin |
|- ( W e. ( LMod i^i Ring ) <-> ( W e. LMod /\ W e. Ring ) ) |
51 |
50
|
anbi1i |
|- ( ( W e. ( LMod i^i Ring ) /\ F e. CRing ) <-> ( ( W e. LMod /\ W e. Ring ) /\ F e. CRing ) ) |
52 |
|
df-3an |
|- ( ( W e. LMod /\ W e. Ring /\ F e. CRing ) <-> ( ( W e. LMod /\ W e. Ring ) /\ F e. CRing ) ) |
53 |
51 52
|
bitr4i |
|- ( ( W e. ( LMod i^i Ring ) /\ F e. CRing ) <-> ( W e. LMod /\ W e. Ring /\ F e. CRing ) ) |
54 |
53
|
anbi1i |
|- ( ( ( W e. ( LMod i^i Ring ) /\ F e. CRing ) /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) <-> ( ( W e. LMod /\ W e. Ring /\ F e. CRing ) /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
55 |
48 49 54
|
3bitr2i |
|- ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring /\ F e. CRing ) /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |