| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isassad.v |  |-  ( ph -> V = ( Base ` W ) ) | 
						
							| 2 |  | isassad.f |  |-  ( ph -> F = ( Scalar ` W ) ) | 
						
							| 3 |  | isassad.b |  |-  ( ph -> B = ( Base ` F ) ) | 
						
							| 4 |  | isassad.s |  |-  ( ph -> .x. = ( .s ` W ) ) | 
						
							| 5 |  | isassad.t |  |-  ( ph -> .X. = ( .r ` W ) ) | 
						
							| 6 |  | isassad.1 |  |-  ( ph -> W e. LMod ) | 
						
							| 7 |  | isassad.2 |  |-  ( ph -> W e. Ring ) | 
						
							| 8 |  | isassad.4 |  |-  ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) ) | 
						
							| 9 |  | isassad.5 |  |-  ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) | 
						
							| 10 | 6 7 | jca |  |-  ( ph -> ( W e. LMod /\ W e. Ring ) ) | 
						
							| 11 | 8 9 | jca |  |-  ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) | 
						
							| 12 | 11 | ralrimivvva |  |-  ( ph -> A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) | 
						
							| 13 | 2 | fveq2d |  |-  ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 14 | 3 13 | eqtrd |  |-  ( ph -> B = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 15 | 4 | oveqd |  |-  ( ph -> ( r .x. x ) = ( r ( .s ` W ) x ) ) | 
						
							| 16 |  | eqidd |  |-  ( ph -> y = y ) | 
						
							| 17 | 5 15 16 | oveq123d |  |-  ( ph -> ( ( r .x. x ) .X. y ) = ( ( r ( .s ` W ) x ) ( .r ` W ) y ) ) | 
						
							| 18 |  | eqidd |  |-  ( ph -> r = r ) | 
						
							| 19 | 5 | oveqd |  |-  ( ph -> ( x .X. y ) = ( x ( .r ` W ) y ) ) | 
						
							| 20 | 4 18 19 | oveq123d |  |-  ( ph -> ( r .x. ( x .X. y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) | 
						
							| 21 | 17 20 | eqeq12d |  |-  ( ph -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) <-> ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) | 
						
							| 22 |  | eqidd |  |-  ( ph -> x = x ) | 
						
							| 23 | 4 | oveqd |  |-  ( ph -> ( r .x. y ) = ( r ( .s ` W ) y ) ) | 
						
							| 24 | 5 22 23 | oveq123d |  |-  ( ph -> ( x .X. ( r .x. y ) ) = ( x ( .r ` W ) ( r ( .s ` W ) y ) ) ) | 
						
							| 25 | 24 20 | eqeq12d |  |-  ( ph -> ( ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) <-> ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) | 
						
							| 26 | 21 25 | anbi12d |  |-  ( ph -> ( ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) | 
						
							| 27 | 1 26 | raleqbidv |  |-  ( ph -> ( A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) | 
						
							| 28 | 1 27 | raleqbidv |  |-  ( ph -> ( A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) | 
						
							| 29 | 14 28 | raleqbidv |  |-  ( ph -> ( A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) | 
						
							| 30 | 12 29 | mpbid |  |-  ( ph -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 32 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 33 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 34 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 35 |  | eqid |  |-  ( .r ` W ) = ( .r ` W ) | 
						
							| 36 | 31 32 33 34 35 | isassa |  |-  ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring ) /\ A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) | 
						
							| 37 | 10 30 36 | sylanbrc |  |-  ( ph -> W e. AssAlg ) |