Description: The predicate "is an atom". ( ela analog.) (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isatom.b | |- B = ( Base ` K ) |
|
| isatom.z | |- .0. = ( 0. ` K ) |
||
| isatom.c | |- C = ( |
||
| isatom.a | |- A = ( Atoms ` K ) |
||
| Assertion | isat | |- ( K e. D -> ( P e. A <-> ( P e. B /\ .0. C P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatom.b | |- B = ( Base ` K ) |
|
| 2 | isatom.z | |- .0. = ( 0. ` K ) |
|
| 3 | isatom.c | |- C = ( |
|
| 4 | isatom.a | |- A = ( Atoms ` K ) |
|
| 5 | 1 2 3 4 | pats | |- ( K e. D -> A = { x e. B | .0. C x } ) |
| 6 | 5 | eleq2d | |- ( K e. D -> ( P e. A <-> P e. { x e. B | .0. C x } ) ) |
| 7 | breq2 | |- ( x = P -> ( .0. C x <-> .0. C P ) ) |
|
| 8 | 7 | elrab | |- ( P e. { x e. B | .0. C x } <-> ( P e. B /\ .0. C P ) ) |
| 9 | 6 8 | bitrdi | |- ( K e. D -> ( P e. A <-> ( P e. B /\ .0. C P ) ) ) |