| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isatlat.b |
|- B = ( Base ` K ) |
| 2 |
|
isatlat.g |
|- G = ( glb ` K ) |
| 3 |
|
isatlat.l |
|- .<_ = ( le ` K ) |
| 4 |
|
isatlat.z |
|- .0. = ( 0. ` K ) |
| 5 |
|
isatlat.a |
|- A = ( Atoms ` K ) |
| 6 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
| 7 |
6 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
| 8 |
|
fveq2 |
|- ( k = K -> ( glb ` k ) = ( glb ` K ) ) |
| 9 |
8 2
|
eqtr4di |
|- ( k = K -> ( glb ` k ) = G ) |
| 10 |
9
|
dmeqd |
|- ( k = K -> dom ( glb ` k ) = dom G ) |
| 11 |
7 10
|
eleq12d |
|- ( k = K -> ( ( Base ` k ) e. dom ( glb ` k ) <-> B e. dom G ) ) |
| 12 |
|
fveq2 |
|- ( k = K -> ( 0. ` k ) = ( 0. ` K ) ) |
| 13 |
12 4
|
eqtr4di |
|- ( k = K -> ( 0. ` k ) = .0. ) |
| 14 |
13
|
neeq2d |
|- ( k = K -> ( x =/= ( 0. ` k ) <-> x =/= .0. ) ) |
| 15 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
| 16 |
15 5
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
| 17 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
| 18 |
17 3
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
| 19 |
18
|
breqd |
|- ( k = K -> ( y ( le ` k ) x <-> y .<_ x ) ) |
| 20 |
16 19
|
rexeqbidv |
|- ( k = K -> ( E. y e. ( Atoms ` k ) y ( le ` k ) x <-> E. y e. A y .<_ x ) ) |
| 21 |
14 20
|
imbi12d |
|- ( k = K -> ( ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) <-> ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| 22 |
7 21
|
raleqbidv |
|- ( k = K -> ( A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) <-> A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| 23 |
11 22
|
anbi12d |
|- ( k = K -> ( ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) ) <-> ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
| 24 |
|
df-atl |
|- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. y e. ( Atoms ` k ) y ( le ` k ) x ) ) } |
| 25 |
23 24
|
elrab2 |
|- ( K e. AtLat <-> ( K e. Lat /\ ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
| 26 |
|
3anass |
|- ( ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) <-> ( K e. Lat /\ ( B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) ) |
| 27 |
25 26
|
bitr4i |
|- ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |