| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 |  |-  G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } | 
						
							| 2 |  | simpr |  |-  ( ( v = V /\ e = E ) -> e = E ) | 
						
							| 3 |  | pweq |  |-  ( v = V -> ~P v = ~P V ) | 
						
							| 4 | 3 | adantr |  |-  ( ( v = V /\ e = E ) -> ~P v = ~P V ) | 
						
							| 5 | 4 | rabeqdv |  |-  ( ( v = V /\ e = E ) -> { x e. ~P v | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 6 | 2 5 | sseq12d |  |-  ( ( v = V /\ e = E ) -> ( e C_ { x e. ~P v | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 7 | 6 1 | brabga |  |-  ( ( V e. W /\ E e. X ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |