| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbndx |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( *Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 2 |
1
|
anbi1i |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) <-> ( ( M e. ( *Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) /\ X =/= (/) ) ) |
| 3 |
|
anass |
|- ( ( ( M e. ( *Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) /\ X =/= (/) ) <-> ( M e. ( *Met ` X ) /\ ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ X =/= (/) ) ) ) |
| 4 |
|
r19.2z |
|- ( ( X =/= (/) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) -> E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
| 5 |
4
|
ancoms |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ X =/= (/) ) -> E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
| 6 |
|
oveq1 |
|- ( x = y -> ( x ( ball ` M ) r ) = ( y ( ball ` M ) r ) ) |
| 7 |
6
|
eqeq2d |
|- ( x = y -> ( X = ( x ( ball ` M ) r ) <-> X = ( y ( ball ` M ) r ) ) ) |
| 8 |
|
oveq2 |
|- ( r = s -> ( y ( ball ` M ) r ) = ( y ( ball ` M ) s ) ) |
| 9 |
8
|
eqeq2d |
|- ( r = s -> ( X = ( y ( ball ` M ) r ) <-> X = ( y ( ball ` M ) s ) ) ) |
| 10 |
7 9
|
cbvrex2vw |
|- ( E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) <-> E. y e. X E. s e. RR+ X = ( y ( ball ` M ) s ) ) |
| 11 |
|
2rp |
|- 2 e. RR+ |
| 12 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ s e. RR+ ) -> ( 2 x. s ) e. RR+ ) |
| 13 |
11 12
|
mpan |
|- ( s e. RR+ -> ( 2 x. s ) e. RR+ ) |
| 14 |
13
|
ad2antll |
|- ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) -> ( 2 x. s ) e. RR+ ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> ( 2 x. s ) e. RR+ ) |
| 16 |
|
rpcn |
|- ( s e. RR+ -> s e. CC ) |
| 17 |
|
2cnd |
|- ( s e. RR+ -> 2 e. CC ) |
| 18 |
|
2ne0 |
|- 2 =/= 0 |
| 19 |
18
|
a1i |
|- ( s e. RR+ -> 2 =/= 0 ) |
| 20 |
|
divcan3 |
|- ( ( s e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. s ) / 2 ) = s ) |
| 21 |
20
|
eqcomd |
|- ( ( s e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> s = ( ( 2 x. s ) / 2 ) ) |
| 22 |
16 17 19 21
|
syl3anc |
|- ( s e. RR+ -> s = ( ( 2 x. s ) / 2 ) ) |
| 23 |
22
|
oveq2d |
|- ( s e. RR+ -> ( y ( ball ` M ) s ) = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) |
| 24 |
23
|
eqeq2d |
|- ( s e. RR+ -> ( X = ( y ( ball ` M ) s ) <-> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) |
| 25 |
24
|
biimpd |
|- ( s e. RR+ -> ( X = ( y ( ball ` M ) s ) -> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) |
| 26 |
25
|
ad2antll |
|- ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) -> ( X = ( y ( ball ` M ) s ) -> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) -> ( X = ( y ( ball ` M ) s ) -> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) |
| 28 |
27
|
imp |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) |
| 29 |
|
simpr |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) -> X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) |
| 30 |
|
eleq2 |
|- ( X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) -> ( x e. X <-> x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) |
| 31 |
30
|
biimpac |
|- ( ( x e. X /\ X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) -> x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) |
| 32 |
|
2re |
|- 2 e. RR |
| 33 |
|
rpre |
|- ( s e. RR+ -> s e. RR ) |
| 34 |
|
remulcl |
|- ( ( 2 e. RR /\ s e. RR ) -> ( 2 x. s ) e. RR ) |
| 35 |
32 33 34
|
sylancr |
|- ( s e. RR+ -> ( 2 x. s ) e. RR ) |
| 36 |
|
blhalf |
|- ( ( ( M e. ( *Met ` X ) /\ y e. X ) /\ ( ( 2 x. s ) e. RR /\ x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 37 |
36
|
expr |
|- ( ( ( M e. ( *Met ` X ) /\ y e. X ) /\ ( 2 x. s ) e. RR ) -> ( x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) ) |
| 38 |
35 37
|
sylan2 |
|- ( ( ( M e. ( *Met ` X ) /\ y e. X ) /\ s e. RR+ ) -> ( x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) ) |
| 39 |
38
|
anasss |
|- ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) -> ( x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) ) |
| 40 |
39
|
imp |
|- ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 41 |
31 40
|
sylan2 |
|- ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ ( x e. X /\ X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 42 |
41
|
anassrs |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) -> ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 43 |
29 42
|
eqsstrd |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) ( ( 2 x. s ) / 2 ) ) ) -> X C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 44 |
28 43
|
syldan |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> X C_ ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 45 |
13
|
adantl |
|- ( ( y e. X /\ s e. RR+ ) -> ( 2 x. s ) e. RR+ ) |
| 46 |
|
rpxr |
|- ( ( 2 x. s ) e. RR+ -> ( 2 x. s ) e. RR* ) |
| 47 |
|
blssm |
|- ( ( M e. ( *Met ` X ) /\ x e. X /\ ( 2 x. s ) e. RR* ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 48 |
46 47
|
syl3an3 |
|- ( ( M e. ( *Met ` X ) /\ x e. X /\ ( 2 x. s ) e. RR+ ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 49 |
48
|
3expa |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( 2 x. s ) e. RR+ ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 50 |
45 49
|
sylan2 |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( y e. X /\ s e. RR+ ) ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 51 |
50
|
an32s |
|- ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 52 |
51
|
adantr |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> ( x ( ball ` M ) ( 2 x. s ) ) C_ X ) |
| 53 |
44 52
|
eqssd |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> X = ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 54 |
|
oveq2 |
|- ( r = ( 2 x. s ) -> ( x ( ball ` M ) r ) = ( x ( ball ` M ) ( 2 x. s ) ) ) |
| 55 |
54
|
rspceeqv |
|- ( ( ( 2 x. s ) e. RR+ /\ X = ( x ( ball ` M ) ( 2 x. s ) ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
| 56 |
15 53 55
|
syl2anc |
|- ( ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) /\ X = ( y ( ball ` M ) s ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
| 57 |
56
|
ex |
|- ( ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) /\ x e. X ) -> ( X = ( y ( ball ` M ) s ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 58 |
57
|
ralrimdva |
|- ( ( M e. ( *Met ` X ) /\ ( y e. X /\ s e. RR+ ) ) -> ( X = ( y ( ball ` M ) s ) -> A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 59 |
58
|
rexlimdvva |
|- ( M e. ( *Met ` X ) -> ( E. y e. X E. s e. RR+ X = ( y ( ball ` M ) s ) -> A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 60 |
10 59
|
biimtrid |
|- ( M e. ( *Met ` X ) -> ( E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 61 |
|
rexn0 |
|- ( E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> X =/= (/) ) |
| 62 |
61
|
a1i |
|- ( M e. ( *Met ` X ) -> ( E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> X =/= (/) ) ) |
| 63 |
60 62
|
jcad |
|- ( M e. ( *Met ` X ) -> ( E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ X =/= (/) ) ) ) |
| 64 |
5 63
|
impbid2 |
|- ( M e. ( *Met ` X ) -> ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ X =/= (/) ) <-> E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 65 |
64
|
pm5.32i |
|- ( ( M e. ( *Met ` X ) /\ ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ X =/= (/) ) ) <-> ( M e. ( *Met ` X ) /\ E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
| 66 |
2 3 65
|
3bitri |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) <-> ( M e. ( *Met ` X ) /\ E. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |