Step |
Hyp |
Ref |
Expression |
1 |
|
bndmet |
|- ( M e. ( Bnd ` X ) -> M e. ( Met ` X ) ) |
2 |
|
0re |
|- 0 e. RR |
3 |
2
|
ne0ii |
|- RR =/= (/) |
4 |
|
metf |
|- ( M e. ( Met ` X ) -> M : ( X X. X ) --> RR ) |
5 |
4
|
ffnd |
|- ( M e. ( Met ` X ) -> M Fn ( X X. X ) ) |
6 |
1 5
|
syl |
|- ( M e. ( Bnd ` X ) -> M Fn ( X X. X ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> M Fn ( X X. X ) ) |
8 |
1 4
|
syl |
|- ( M e. ( Bnd ` X ) -> M : ( X X. X ) --> RR ) |
9 |
8
|
fdmd |
|- ( M e. ( Bnd ` X ) -> dom M = ( X X. X ) ) |
10 |
|
xpeq2 |
|- ( X = (/) -> ( X X. X ) = ( X X. (/) ) ) |
11 |
|
xp0 |
|- ( X X. (/) ) = (/) |
12 |
10 11
|
eqtrdi |
|- ( X = (/) -> ( X X. X ) = (/) ) |
13 |
9 12
|
sylan9eq |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> dom M = (/) ) |
14 |
13
|
adantr |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> dom M = (/) ) |
15 |
|
dm0rn0 |
|- ( dom M = (/) <-> ran M = (/) ) |
16 |
14 15
|
sylib |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> ran M = (/) ) |
17 |
|
0ss |
|- (/) C_ ( 0 [,] x ) |
18 |
16 17
|
eqsstrdi |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> ran M C_ ( 0 [,] x ) ) |
19 |
|
df-f |
|- ( M : ( X X. X ) --> ( 0 [,] x ) <-> ( M Fn ( X X. X ) /\ ran M C_ ( 0 [,] x ) ) ) |
20 |
7 18 19
|
sylanbrc |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> M : ( X X. X ) --> ( 0 [,] x ) ) |
21 |
20
|
ralrimiva |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> A. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
22 |
|
r19.2z |
|- ( ( RR =/= (/) /\ A. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
23 |
3 21 22
|
sylancr |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
24 |
|
isbnd2 |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) <-> ( M e. ( *Met ` X ) /\ E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) |
25 |
24
|
simprbi |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
26 |
|
2re |
|- 2 e. RR |
27 |
|
simprlr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> r e. RR+ ) |
28 |
27
|
rpred |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> r e. RR ) |
29 |
|
remulcl |
|- ( ( 2 e. RR /\ r e. RR ) -> ( 2 x. r ) e. RR ) |
30 |
26 28 29
|
sylancr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> ( 2 x. r ) e. RR ) |
31 |
5
|
adantr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> M Fn ( X X. X ) ) |
32 |
|
simpll |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> M e. ( Met ` X ) ) |
33 |
|
simprl |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> x e. X ) |
34 |
|
simprr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> z e. X ) |
35 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ x e. X /\ z e. X ) -> ( x M z ) e. RR ) |
36 |
32 33 34 35
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) e. RR ) |
37 |
|
metge0 |
|- ( ( M e. ( Met ` X ) /\ x e. X /\ z e. X ) -> 0 <_ ( x M z ) ) |
38 |
32 33 34 37
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> 0 <_ ( x M z ) ) |
39 |
30
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( 2 x. r ) e. RR ) |
40 |
|
simprll |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> y e. X ) |
41 |
40
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> y e. X ) |
42 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ y e. X /\ x e. X ) -> ( y M x ) e. RR ) |
43 |
32 41 33 42
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M x ) e. RR ) |
44 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ y e. X /\ z e. X ) -> ( y M z ) e. RR ) |
45 |
32 41 34 44
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M z ) e. RR ) |
46 |
43 45
|
readdcld |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) e. RR ) |
47 |
|
mettri2 |
|- ( ( M e. ( Met ` X ) /\ ( y e. X /\ x e. X /\ z e. X ) ) -> ( x M z ) <_ ( ( y M x ) + ( y M z ) ) ) |
48 |
32 41 33 34 47
|
syl13anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) <_ ( ( y M x ) + ( y M z ) ) ) |
49 |
28
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. RR ) |
50 |
|
simplrr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> X = ( y ( ball ` M ) r ) ) |
51 |
33 50
|
eleqtrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> x e. ( y ( ball ` M ) r ) ) |
52 |
|
metxmet |
|- ( M e. ( Met ` X ) -> M e. ( *Met ` X ) ) |
53 |
32 52
|
syl |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> M e. ( *Met ` X ) ) |
54 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
55 |
54
|
ad2antlr |
|- ( ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) -> r e. RR* ) |
56 |
55
|
ad2antlr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. RR* ) |
57 |
|
elbl2 |
|- ( ( ( M e. ( *Met ` X ) /\ r e. RR* ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` M ) r ) <-> ( y M x ) < r ) ) |
58 |
53 56 41 33 57
|
syl22anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x e. ( y ( ball ` M ) r ) <-> ( y M x ) < r ) ) |
59 |
51 58
|
mpbid |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M x ) < r ) |
60 |
34 50
|
eleqtrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> z e. ( y ( ball ` M ) r ) ) |
61 |
|
elbl2 |
|- ( ( ( M e. ( *Met ` X ) /\ r e. RR* ) /\ ( y e. X /\ z e. X ) ) -> ( z e. ( y ( ball ` M ) r ) <-> ( y M z ) < r ) ) |
62 |
53 56 41 34 61
|
syl22anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( z e. ( y ( ball ` M ) r ) <-> ( y M z ) < r ) ) |
63 |
60 62
|
mpbid |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M z ) < r ) |
64 |
43 45 49 49 59 63
|
lt2addd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) < ( r + r ) ) |
65 |
49
|
recnd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. CC ) |
66 |
65
|
2timesd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( 2 x. r ) = ( r + r ) ) |
67 |
64 66
|
breqtrrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) < ( 2 x. r ) ) |
68 |
36 46 39 48 67
|
lelttrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) < ( 2 x. r ) ) |
69 |
36 39 68
|
ltled |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) <_ ( 2 x. r ) ) |
70 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( 2 x. r ) e. RR ) -> ( ( x M z ) e. ( 0 [,] ( 2 x. r ) ) <-> ( ( x M z ) e. RR /\ 0 <_ ( x M z ) /\ ( x M z ) <_ ( 2 x. r ) ) ) ) |
71 |
2 39 70
|
sylancr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( x M z ) e. ( 0 [,] ( 2 x. r ) ) <-> ( ( x M z ) e. RR /\ 0 <_ ( x M z ) /\ ( x M z ) <_ ( 2 x. r ) ) ) ) |
72 |
36 38 69 71
|
mpbir3and |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) |
73 |
72
|
ralrimivva |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> A. x e. X A. z e. X ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) |
74 |
|
ffnov |
|- ( M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) <-> ( M Fn ( X X. X ) /\ A. x e. X A. z e. X ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) ) |
75 |
31 73 74
|
sylanbrc |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) |
76 |
|
oveq2 |
|- ( x = ( 2 x. r ) -> ( 0 [,] x ) = ( 0 [,] ( 2 x. r ) ) ) |
77 |
76
|
feq3d |
|- ( x = ( 2 x. r ) -> ( M : ( X X. X ) --> ( 0 [,] x ) <-> M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) ) |
78 |
77
|
rspcev |
|- ( ( ( 2 x. r ) e. RR /\ M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
79 |
30 75 78
|
syl2anc |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
80 |
79
|
expr |
|- ( ( M e. ( Met ` X ) /\ ( y e. X /\ r e. RR+ ) ) -> ( X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
81 |
80
|
rexlimdvva |
|- ( M e. ( Met ` X ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
82 |
1 81
|
syl |
|- ( M e. ( Bnd ` X ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
83 |
82
|
adantr |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
84 |
25 83
|
mpd |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
85 |
23 84
|
pm2.61dane |
|- ( M e. ( Bnd ` X ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
86 |
1 85
|
jca |
|- ( M e. ( Bnd ` X ) -> ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
87 |
|
simpll |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Met ` X ) ) |
88 |
|
simpllr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> x e. RR ) |
89 |
87
|
adantr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M e. ( Met ` X ) ) |
90 |
|
simpr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> y e. X ) |
91 |
|
met0 |
|- ( ( M e. ( Met ` X ) /\ y e. X ) -> ( y M y ) = 0 ) |
92 |
89 90 91
|
syl2anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) = 0 ) |
93 |
|
simplr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M : ( X X. X ) --> ( 0 [,] x ) ) |
94 |
93 90 90
|
fovrnd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) e. ( 0 [,] x ) ) |
95 |
|
elicc2 |
|- ( ( 0 e. RR /\ x e. RR ) -> ( ( y M y ) e. ( 0 [,] x ) <-> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) ) |
96 |
2 88 95
|
sylancr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M y ) e. ( 0 [,] x ) <-> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) ) |
97 |
94 96
|
mpbid |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) |
98 |
97
|
simp3d |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) <_ x ) |
99 |
92 98
|
eqbrtrrd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> 0 <_ x ) |
100 |
88 99
|
ge0p1rpd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR+ ) |
101 |
|
fovrn |
|- ( ( M : ( X X. X ) --> ( 0 [,] x ) /\ y e. X /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
102 |
101
|
3expa |
|- ( ( ( M : ( X X. X ) --> ( 0 [,] x ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
103 |
102
|
adantlll |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
104 |
|
elicc2 |
|- ( ( 0 e. RR /\ x e. RR ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
105 |
2 88 104
|
sylancr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
106 |
105
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
107 |
103 106
|
mpbid |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) |
108 |
107
|
simp1d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. RR ) |
109 |
88
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> x e. RR ) |
110 |
|
peano2re |
|- ( x e. RR -> ( x + 1 ) e. RR ) |
111 |
88 110
|
syl |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR ) |
112 |
111
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( x + 1 ) e. RR ) |
113 |
107
|
simp3d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) <_ x ) |
114 |
109
|
ltp1d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> x < ( x + 1 ) ) |
115 |
108 109 112 113 114
|
lelttrd |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) < ( x + 1 ) ) |
116 |
115
|
ralrimiva |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> A. z e. X ( y M z ) < ( x + 1 ) ) |
117 |
|
rabid2 |
|- ( X = { z e. X | ( y M z ) < ( x + 1 ) } <-> A. z e. X ( y M z ) < ( x + 1 ) ) |
118 |
116 117
|
sylibr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> X = { z e. X | ( y M z ) < ( x + 1 ) } ) |
119 |
89 52
|
syl |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M e. ( *Met ` X ) ) |
120 |
111
|
rexrd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR* ) |
121 |
|
blval |
|- ( ( M e. ( *Met ` X ) /\ y e. X /\ ( x + 1 ) e. RR* ) -> ( y ( ball ` M ) ( x + 1 ) ) = { z e. X | ( y M z ) < ( x + 1 ) } ) |
122 |
119 90 120 121
|
syl3anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y ( ball ` M ) ( x + 1 ) ) = { z e. X | ( y M z ) < ( x + 1 ) } ) |
123 |
118 122
|
eqtr4d |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> X = ( y ( ball ` M ) ( x + 1 ) ) ) |
124 |
|
oveq2 |
|- ( r = ( x + 1 ) -> ( y ( ball ` M ) r ) = ( y ( ball ` M ) ( x + 1 ) ) ) |
125 |
124
|
rspceeqv |
|- ( ( ( x + 1 ) e. RR+ /\ X = ( y ( ball ` M ) ( x + 1 ) ) ) -> E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
126 |
100 123 125
|
syl2anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
127 |
126
|
ralrimiva |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
128 |
|
isbnd |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) |
129 |
87 127 128
|
sylanbrc |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Bnd ` X ) ) |
130 |
129
|
r19.29an |
|- ( ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Bnd ` X ) ) |
131 |
86 130
|
impbii |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |