| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndmet |
|- ( M e. ( Bnd ` X ) -> M e. ( Met ` X ) ) |
| 2 |
|
0re |
|- 0 e. RR |
| 3 |
2
|
ne0ii |
|- RR =/= (/) |
| 4 |
|
metf |
|- ( M e. ( Met ` X ) -> M : ( X X. X ) --> RR ) |
| 5 |
4
|
ffnd |
|- ( M e. ( Met ` X ) -> M Fn ( X X. X ) ) |
| 6 |
1 5
|
syl |
|- ( M e. ( Bnd ` X ) -> M Fn ( X X. X ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> M Fn ( X X. X ) ) |
| 8 |
1 4
|
syl |
|- ( M e. ( Bnd ` X ) -> M : ( X X. X ) --> RR ) |
| 9 |
8
|
fdmd |
|- ( M e. ( Bnd ` X ) -> dom M = ( X X. X ) ) |
| 10 |
|
xpeq2 |
|- ( X = (/) -> ( X X. X ) = ( X X. (/) ) ) |
| 11 |
|
xp0 |
|- ( X X. (/) ) = (/) |
| 12 |
10 11
|
eqtrdi |
|- ( X = (/) -> ( X X. X ) = (/) ) |
| 13 |
9 12
|
sylan9eq |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> dom M = (/) ) |
| 14 |
13
|
adantr |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> dom M = (/) ) |
| 15 |
|
dm0rn0 |
|- ( dom M = (/) <-> ran M = (/) ) |
| 16 |
14 15
|
sylib |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> ran M = (/) ) |
| 17 |
|
0ss |
|- (/) C_ ( 0 [,] x ) |
| 18 |
16 17
|
eqsstrdi |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> ran M C_ ( 0 [,] x ) ) |
| 19 |
|
df-f |
|- ( M : ( X X. X ) --> ( 0 [,] x ) <-> ( M Fn ( X X. X ) /\ ran M C_ ( 0 [,] x ) ) ) |
| 20 |
7 18 19
|
sylanbrc |
|- ( ( ( M e. ( Bnd ` X ) /\ X = (/) ) /\ x e. RR ) -> M : ( X X. X ) --> ( 0 [,] x ) ) |
| 21 |
20
|
ralrimiva |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> A. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 22 |
|
r19.2z |
|- ( ( RR =/= (/) /\ A. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 23 |
3 21 22
|
sylancr |
|- ( ( M e. ( Bnd ` X ) /\ X = (/) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 24 |
|
isbnd2 |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) <-> ( M e. ( *Met ` X ) /\ E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) |
| 25 |
24
|
simprbi |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
| 26 |
|
2re |
|- 2 e. RR |
| 27 |
|
simprlr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> r e. RR+ ) |
| 28 |
27
|
rpred |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> r e. RR ) |
| 29 |
|
remulcl |
|- ( ( 2 e. RR /\ r e. RR ) -> ( 2 x. r ) e. RR ) |
| 30 |
26 28 29
|
sylancr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> ( 2 x. r ) e. RR ) |
| 31 |
5
|
adantr |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> M Fn ( X X. X ) ) |
| 32 |
|
simpll |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> M e. ( Met ` X ) ) |
| 33 |
|
simprl |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> x e. X ) |
| 34 |
|
simprr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> z e. X ) |
| 35 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ x e. X /\ z e. X ) -> ( x M z ) e. RR ) |
| 36 |
32 33 34 35
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) e. RR ) |
| 37 |
|
metge0 |
|- ( ( M e. ( Met ` X ) /\ x e. X /\ z e. X ) -> 0 <_ ( x M z ) ) |
| 38 |
32 33 34 37
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> 0 <_ ( x M z ) ) |
| 39 |
30
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( 2 x. r ) e. RR ) |
| 40 |
|
simprll |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> y e. X ) |
| 41 |
40
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> y e. X ) |
| 42 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ y e. X /\ x e. X ) -> ( y M x ) e. RR ) |
| 43 |
32 41 33 42
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M x ) e. RR ) |
| 44 |
|
metcl |
|- ( ( M e. ( Met ` X ) /\ y e. X /\ z e. X ) -> ( y M z ) e. RR ) |
| 45 |
32 41 34 44
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M z ) e. RR ) |
| 46 |
43 45
|
readdcld |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) e. RR ) |
| 47 |
|
mettri2 |
|- ( ( M e. ( Met ` X ) /\ ( y e. X /\ x e. X /\ z e. X ) ) -> ( x M z ) <_ ( ( y M x ) + ( y M z ) ) ) |
| 48 |
32 41 33 34 47
|
syl13anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) <_ ( ( y M x ) + ( y M z ) ) ) |
| 49 |
28
|
adantr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. RR ) |
| 50 |
|
simplrr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> X = ( y ( ball ` M ) r ) ) |
| 51 |
33 50
|
eleqtrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> x e. ( y ( ball ` M ) r ) ) |
| 52 |
|
metxmet |
|- ( M e. ( Met ` X ) -> M e. ( *Met ` X ) ) |
| 53 |
32 52
|
syl |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> M e. ( *Met ` X ) ) |
| 54 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
| 55 |
54
|
ad2antlr |
|- ( ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) -> r e. RR* ) |
| 56 |
55
|
ad2antlr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. RR* ) |
| 57 |
|
elbl2 |
|- ( ( ( M e. ( *Met ` X ) /\ r e. RR* ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` M ) r ) <-> ( y M x ) < r ) ) |
| 58 |
53 56 41 33 57
|
syl22anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x e. ( y ( ball ` M ) r ) <-> ( y M x ) < r ) ) |
| 59 |
51 58
|
mpbid |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M x ) < r ) |
| 60 |
34 50
|
eleqtrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> z e. ( y ( ball ` M ) r ) ) |
| 61 |
|
elbl2 |
|- ( ( ( M e. ( *Met ` X ) /\ r e. RR* ) /\ ( y e. X /\ z e. X ) ) -> ( z e. ( y ( ball ` M ) r ) <-> ( y M z ) < r ) ) |
| 62 |
53 56 41 34 61
|
syl22anc |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( z e. ( y ( ball ` M ) r ) <-> ( y M z ) < r ) ) |
| 63 |
60 62
|
mpbid |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( y M z ) < r ) |
| 64 |
43 45 49 49 59 63
|
lt2addd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) < ( r + r ) ) |
| 65 |
49
|
recnd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> r e. CC ) |
| 66 |
65
|
2timesd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( 2 x. r ) = ( r + r ) ) |
| 67 |
64 66
|
breqtrrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( y M x ) + ( y M z ) ) < ( 2 x. r ) ) |
| 68 |
36 46 39 48 67
|
lelttrd |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) < ( 2 x. r ) ) |
| 69 |
36 39 68
|
ltled |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) <_ ( 2 x. r ) ) |
| 70 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( 2 x. r ) e. RR ) -> ( ( x M z ) e. ( 0 [,] ( 2 x. r ) ) <-> ( ( x M z ) e. RR /\ 0 <_ ( x M z ) /\ ( x M z ) <_ ( 2 x. r ) ) ) ) |
| 71 |
2 39 70
|
sylancr |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( ( x M z ) e. ( 0 [,] ( 2 x. r ) ) <-> ( ( x M z ) e. RR /\ 0 <_ ( x M z ) /\ ( x M z ) <_ ( 2 x. r ) ) ) ) |
| 72 |
36 38 69 71
|
mpbir3and |
|- ( ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) /\ ( x e. X /\ z e. X ) ) -> ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) |
| 73 |
72
|
ralrimivva |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> A. x e. X A. z e. X ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) |
| 74 |
|
ffnov |
|- ( M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) <-> ( M Fn ( X X. X ) /\ A. x e. X A. z e. X ( x M z ) e. ( 0 [,] ( 2 x. r ) ) ) ) |
| 75 |
31 73 74
|
sylanbrc |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) |
| 76 |
|
oveq2 |
|- ( x = ( 2 x. r ) -> ( 0 [,] x ) = ( 0 [,] ( 2 x. r ) ) ) |
| 77 |
76
|
feq3d |
|- ( x = ( 2 x. r ) -> ( M : ( X X. X ) --> ( 0 [,] x ) <-> M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) ) |
| 78 |
77
|
rspcev |
|- ( ( ( 2 x. r ) e. RR /\ M : ( X X. X ) --> ( 0 [,] ( 2 x. r ) ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 79 |
30 75 78
|
syl2anc |
|- ( ( M e. ( Met ` X ) /\ ( ( y e. X /\ r e. RR+ ) /\ X = ( y ( ball ` M ) r ) ) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 80 |
79
|
expr |
|- ( ( M e. ( Met ` X ) /\ ( y e. X /\ r e. RR+ ) ) -> ( X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
| 81 |
80
|
rexlimdvva |
|- ( M e. ( Met ` X ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
| 82 |
1 81
|
syl |
|- ( M e. ( Bnd ` X ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
| 83 |
82
|
adantr |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> ( E. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
| 84 |
25 83
|
mpd |
|- ( ( M e. ( Bnd ` X ) /\ X =/= (/) ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 85 |
23 84
|
pm2.61dane |
|- ( M e. ( Bnd ` X ) -> E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) |
| 86 |
1 85
|
jca |
|- ( M e. ( Bnd ` X ) -> ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |
| 87 |
|
simpll |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Met ` X ) ) |
| 88 |
|
simpllr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> x e. RR ) |
| 89 |
87
|
adantr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M e. ( Met ` X ) ) |
| 90 |
|
simpr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> y e. X ) |
| 91 |
|
met0 |
|- ( ( M e. ( Met ` X ) /\ y e. X ) -> ( y M y ) = 0 ) |
| 92 |
89 90 91
|
syl2anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) = 0 ) |
| 93 |
|
simplr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M : ( X X. X ) --> ( 0 [,] x ) ) |
| 94 |
93 90 90
|
fovcdmd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) e. ( 0 [,] x ) ) |
| 95 |
|
elicc2 |
|- ( ( 0 e. RR /\ x e. RR ) -> ( ( y M y ) e. ( 0 [,] x ) <-> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) ) |
| 96 |
2 88 95
|
sylancr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M y ) e. ( 0 [,] x ) <-> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) ) |
| 97 |
94 96
|
mpbid |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M y ) e. RR /\ 0 <_ ( y M y ) /\ ( y M y ) <_ x ) ) |
| 98 |
97
|
simp3d |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y M y ) <_ x ) |
| 99 |
92 98
|
eqbrtrrd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> 0 <_ x ) |
| 100 |
88 99
|
ge0p1rpd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR+ ) |
| 101 |
|
fovcdm |
|- ( ( M : ( X X. X ) --> ( 0 [,] x ) /\ y e. X /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
| 102 |
101
|
3expa |
|- ( ( ( M : ( X X. X ) --> ( 0 [,] x ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
| 103 |
102
|
adantlll |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. ( 0 [,] x ) ) |
| 104 |
|
elicc2 |
|- ( ( 0 e. RR /\ x e. RR ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
| 105 |
2 88 104
|
sylancr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
| 106 |
105
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( ( y M z ) e. ( 0 [,] x ) <-> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) ) |
| 107 |
103 106
|
mpbid |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( ( y M z ) e. RR /\ 0 <_ ( y M z ) /\ ( y M z ) <_ x ) ) |
| 108 |
107
|
simp1d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) e. RR ) |
| 109 |
88
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> x e. RR ) |
| 110 |
|
peano2re |
|- ( x e. RR -> ( x + 1 ) e. RR ) |
| 111 |
88 110
|
syl |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR ) |
| 112 |
111
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( x + 1 ) e. RR ) |
| 113 |
107
|
simp3d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) <_ x ) |
| 114 |
109
|
ltp1d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> x < ( x + 1 ) ) |
| 115 |
108 109 112 113 114
|
lelttrd |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) /\ z e. X ) -> ( y M z ) < ( x + 1 ) ) |
| 116 |
115
|
ralrimiva |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> A. z e. X ( y M z ) < ( x + 1 ) ) |
| 117 |
|
rabid2 |
|- ( X = { z e. X | ( y M z ) < ( x + 1 ) } <-> A. z e. X ( y M z ) < ( x + 1 ) ) |
| 118 |
116 117
|
sylibr |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> X = { z e. X | ( y M z ) < ( x + 1 ) } ) |
| 119 |
89 52
|
syl |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> M e. ( *Met ` X ) ) |
| 120 |
111
|
rexrd |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( x + 1 ) e. RR* ) |
| 121 |
|
blval |
|- ( ( M e. ( *Met ` X ) /\ y e. X /\ ( x + 1 ) e. RR* ) -> ( y ( ball ` M ) ( x + 1 ) ) = { z e. X | ( y M z ) < ( x + 1 ) } ) |
| 122 |
119 90 120 121
|
syl3anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> ( y ( ball ` M ) ( x + 1 ) ) = { z e. X | ( y M z ) < ( x + 1 ) } ) |
| 123 |
118 122
|
eqtr4d |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> X = ( y ( ball ` M ) ( x + 1 ) ) ) |
| 124 |
|
oveq2 |
|- ( r = ( x + 1 ) -> ( y ( ball ` M ) r ) = ( y ( ball ` M ) ( x + 1 ) ) ) |
| 125 |
124
|
rspceeqv |
|- ( ( ( x + 1 ) e. RR+ /\ X = ( y ( ball ` M ) ( x + 1 ) ) ) -> E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
| 126 |
100 123 125
|
syl2anc |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) /\ y e. X ) -> E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
| 127 |
126
|
ralrimiva |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) |
| 128 |
|
isbnd |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) |
| 129 |
87 127 128
|
sylanbrc |
|- ( ( ( M e. ( Met ` X ) /\ x e. RR ) /\ M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Bnd ` X ) ) |
| 130 |
129
|
r19.29an |
|- ( ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) -> M e. ( Bnd ` X ) ) |
| 131 |
86 130
|
impbii |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ E. x e. RR M : ( X X. X ) --> ( 0 [,] x ) ) ) |