Step |
Hyp |
Ref |
Expression |
1 |
|
isbnd |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
2 |
|
metxmet |
|- ( M e. ( Met ` X ) -> M e. ( *Met ` X ) ) |
3 |
|
simpr |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ M e. ( *Met ` X ) ) -> M e. ( *Met ` X ) ) |
4 |
|
xmetf |
|- ( M e. ( *Met ` X ) -> M : ( X X. X ) --> RR* ) |
5 |
|
ffn |
|- ( M : ( X X. X ) --> RR* -> M Fn ( X X. X ) ) |
6 |
3 4 5
|
3syl |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ M e. ( *Met ` X ) ) -> M Fn ( X X. X ) ) |
7 |
|
simprr |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) -> X = ( x ( ball ` M ) r ) ) |
8 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
9 |
|
eqid |
|- ( `' M " RR ) = ( `' M " RR ) |
10 |
9
|
blssec |
|- ( ( M e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` M ) r ) C_ [ x ] ( `' M " RR ) ) |
11 |
10
|
3expa |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ r e. RR* ) -> ( x ( ball ` M ) r ) C_ [ x ] ( `' M " RR ) ) |
12 |
8 11
|
sylan2 |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ r e. RR+ ) -> ( x ( ball ` M ) r ) C_ [ x ] ( `' M " RR ) ) |
13 |
12
|
adantrr |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) -> ( x ( ball ` M ) r ) C_ [ x ] ( `' M " RR ) ) |
14 |
7 13
|
eqsstrd |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) -> X C_ [ x ] ( `' M " RR ) ) |
15 |
14
|
sselda |
|- ( ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) /\ y e. X ) -> y e. [ x ] ( `' M " RR ) ) |
16 |
|
vex |
|- y e. _V |
17 |
|
vex |
|- x e. _V |
18 |
16 17
|
elec |
|- ( y e. [ x ] ( `' M " RR ) <-> x ( `' M " RR ) y ) |
19 |
15 18
|
sylib |
|- ( ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) /\ y e. X ) -> x ( `' M " RR ) y ) |
20 |
9
|
xmeterval |
|- ( M e. ( *Met ` X ) -> ( x ( `' M " RR ) y <-> ( x e. X /\ y e. X /\ ( x M y ) e. RR ) ) ) |
21 |
20
|
ad3antrrr |
|- ( ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) /\ y e. X ) -> ( x ( `' M " RR ) y <-> ( x e. X /\ y e. X /\ ( x M y ) e. RR ) ) ) |
22 |
19 21
|
mpbid |
|- ( ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) /\ y e. X ) -> ( x e. X /\ y e. X /\ ( x M y ) e. RR ) ) |
23 |
22
|
simp3d |
|- ( ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) /\ y e. X ) -> ( x M y ) e. RR ) |
24 |
23
|
ralrimiva |
|- ( ( ( M e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR+ /\ X = ( x ( ball ` M ) r ) ) ) -> A. y e. X ( x M y ) e. RR ) |
25 |
24
|
rexlimdvaa |
|- ( ( M e. ( *Met ` X ) /\ x e. X ) -> ( E. r e. RR+ X = ( x ( ball ` M ) r ) -> A. y e. X ( x M y ) e. RR ) ) |
26 |
25
|
ralimdva |
|- ( M e. ( *Met ` X ) -> ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> A. x e. X A. y e. X ( x M y ) e. RR ) ) |
27 |
26
|
impcom |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ M e. ( *Met ` X ) ) -> A. x e. X A. y e. X ( x M y ) e. RR ) |
28 |
|
ffnov |
|- ( M : ( X X. X ) --> RR <-> ( M Fn ( X X. X ) /\ A. x e. X A. y e. X ( x M y ) e. RR ) ) |
29 |
6 27 28
|
sylanbrc |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ M e. ( *Met ` X ) ) -> M : ( X X. X ) --> RR ) |
30 |
|
ismet2 |
|- ( M e. ( Met ` X ) <-> ( M e. ( *Met ` X ) /\ M : ( X X. X ) --> RR ) ) |
31 |
3 29 30
|
sylanbrc |
|- ( ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) /\ M e. ( *Met ` X ) ) -> M e. ( Met ` X ) ) |
32 |
31
|
ex |
|- ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> ( M e. ( *Met ` X ) -> M e. ( Met ` X ) ) ) |
33 |
2 32
|
impbid2 |
|- ( A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) -> ( M e. ( Met ` X ) <-> M e. ( *Met ` X ) ) ) |
34 |
33
|
pm5.32ri |
|- ( ( M e. ( Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) <-> ( M e. ( *Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
35 |
1 34
|
bitri |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( *Met ` X ) /\ A. x e. X E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |