Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
|- ( card ` A ) e. On |
2 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
3 |
1 2
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
4 |
|
cardonle |
|- ( A e. On -> ( card ` A ) C_ A ) |
5 |
|
eqss |
|- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
6 |
5
|
baibr |
|- ( ( card ` A ) C_ A -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
7 |
4 6
|
syl |
|- ( A e. On -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
8 |
|
dfss3 |
|- ( A C_ ( card ` A ) <-> A. x e. A x e. ( card ` A ) ) |
9 |
|
onelon |
|- ( ( A e. On /\ x e. A ) -> x e. On ) |
10 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
11 |
10
|
adantr |
|- ( ( A e. On /\ x e. A ) -> A e. dom card ) |
12 |
|
cardsdomel |
|- ( ( x e. On /\ A e. dom card ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ( A e. On /\ x e. A ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
14 |
13
|
ralbidva |
|- ( A e. On -> ( A. x e. A x ~< A <-> A. x e. A x e. ( card ` A ) ) ) |
15 |
8 14
|
bitr4id |
|- ( A e. On -> ( A C_ ( card ` A ) <-> A. x e. A x ~< A ) ) |
16 |
7 15
|
bitr3d |
|- ( A e. On -> ( ( card ` A ) = A <-> A. x e. A x ~< A ) ) |
17 |
3 16
|
biadanii |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |