Metamath Proof Explorer


Theorem iscard

Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion iscard
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) )

Proof

Step Hyp Ref Expression
1 cardon
 |-  ( card ` A ) e. On
2 eleq1
 |-  ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) )
3 1 2 mpbii
 |-  ( ( card ` A ) = A -> A e. On )
4 cardonle
 |-  ( A e. On -> ( card ` A ) C_ A )
5 eqss
 |-  ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) )
6 5 baibr
 |-  ( ( card ` A ) C_ A -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) )
7 4 6 syl
 |-  ( A e. On -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) )
8 dfss3
 |-  ( A C_ ( card ` A ) <-> A. x e. A x e. ( card ` A ) )
9 onelon
 |-  ( ( A e. On /\ x e. A ) -> x e. On )
10 onenon
 |-  ( A e. On -> A e. dom card )
11 10 adantr
 |-  ( ( A e. On /\ x e. A ) -> A e. dom card )
12 cardsdomel
 |-  ( ( x e. On /\ A e. dom card ) -> ( x ~< A <-> x e. ( card ` A ) ) )
13 9 11 12 syl2anc
 |-  ( ( A e. On /\ x e. A ) -> ( x ~< A <-> x e. ( card ` A ) ) )
14 13 ralbidva
 |-  ( A e. On -> ( A. x e. A x ~< A <-> A. x e. A x e. ( card ` A ) ) )
15 8 14 bitr4id
 |-  ( A e. On -> ( A C_ ( card ` A ) <-> A. x e. A x ~< A ) )
16 7 15 bitr3d
 |-  ( A e. On -> ( ( card ` A ) = A <-> A. x e. A x ~< A ) )
17 3 16 biadanii
 |-  ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) )