Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
|- ( card ` A ) e. On |
2 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
3 |
1 2
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
4 |
|
eqss |
|- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
5 |
|
cardonle |
|- ( A e. On -> ( card ` A ) C_ A ) |
6 |
5
|
biantrurd |
|- ( A e. On -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) ) |
7 |
4 6
|
bitr4id |
|- ( A e. On -> ( ( card ` A ) = A <-> A C_ ( card ` A ) ) ) |
8 |
|
oncardval |
|- ( A e. On -> ( card ` A ) = |^| { y e. On | y ~~ A } ) |
9 |
8
|
sseq2d |
|- ( A e. On -> ( A C_ ( card ` A ) <-> A C_ |^| { y e. On | y ~~ A } ) ) |
10 |
7 9
|
bitrd |
|- ( A e. On -> ( ( card ` A ) = A <-> A C_ |^| { y e. On | y ~~ A } ) ) |
11 |
|
ssint |
|- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. { y e. On | y ~~ A } A C_ x ) |
12 |
|
breq1 |
|- ( y = x -> ( y ~~ A <-> x ~~ A ) ) |
13 |
12
|
elrab |
|- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ x ~~ A ) ) |
14 |
|
ensymb |
|- ( x ~~ A <-> A ~~ x ) |
15 |
14
|
anbi2i |
|- ( ( x e. On /\ x ~~ A ) <-> ( x e. On /\ A ~~ x ) ) |
16 |
13 15
|
bitri |
|- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ A ~~ x ) ) |
17 |
16
|
imbi1i |
|- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( ( x e. On /\ A ~~ x ) -> A C_ x ) ) |
18 |
|
impexp |
|- ( ( ( x e. On /\ A ~~ x ) -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
19 |
17 18
|
bitri |
|- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
20 |
19
|
ralbii2 |
|- ( A. x e. { y e. On | y ~~ A } A C_ x <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
21 |
11 20
|
bitri |
|- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
22 |
10 21
|
bitrdi |
|- ( A e. On -> ( ( card ` A ) = A <-> A. x e. On ( A ~~ x -> A C_ x ) ) ) |
23 |
3 22
|
biadanii |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. On ( A ~~ x -> A C_ x ) ) ) |