| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardon |
|- ( card ` A ) e. On |
| 2 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
| 3 |
1 2
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
| 4 |
|
eqss |
|- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
| 5 |
|
cardonle |
|- ( A e. On -> ( card ` A ) C_ A ) |
| 6 |
5
|
biantrurd |
|- ( A e. On -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) ) |
| 7 |
4 6
|
bitr4id |
|- ( A e. On -> ( ( card ` A ) = A <-> A C_ ( card ` A ) ) ) |
| 8 |
|
oncardval |
|- ( A e. On -> ( card ` A ) = |^| { y e. On | y ~~ A } ) |
| 9 |
8
|
sseq2d |
|- ( A e. On -> ( A C_ ( card ` A ) <-> A C_ |^| { y e. On | y ~~ A } ) ) |
| 10 |
7 9
|
bitrd |
|- ( A e. On -> ( ( card ` A ) = A <-> A C_ |^| { y e. On | y ~~ A } ) ) |
| 11 |
|
ssint |
|- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. { y e. On | y ~~ A } A C_ x ) |
| 12 |
|
breq1 |
|- ( y = x -> ( y ~~ A <-> x ~~ A ) ) |
| 13 |
12
|
elrab |
|- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ x ~~ A ) ) |
| 14 |
|
ensymb |
|- ( x ~~ A <-> A ~~ x ) |
| 15 |
14
|
anbi2i |
|- ( ( x e. On /\ x ~~ A ) <-> ( x e. On /\ A ~~ x ) ) |
| 16 |
13 15
|
bitri |
|- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ A ~~ x ) ) |
| 17 |
16
|
imbi1i |
|- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( ( x e. On /\ A ~~ x ) -> A C_ x ) ) |
| 18 |
|
impexp |
|- ( ( ( x e. On /\ A ~~ x ) -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
| 19 |
17 18
|
bitri |
|- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
| 20 |
19
|
ralbii2 |
|- ( A. x e. { y e. On | y ~~ A } A C_ x <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
| 21 |
11 20
|
bitri |
|- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
| 22 |
10 21
|
bitrdi |
|- ( A e. On -> ( ( card ` A ) = A <-> A. x e. On ( A ~~ x -> A C_ x ) ) ) |
| 23 |
3 22
|
biadanii |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. On ( A ~~ x -> A C_ x ) ) ) |