Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
|- ( card ` A ) e. On |
2 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
3 |
1 2
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
4 |
|
eloni |
|- ( A e. On -> Ord A ) |
5 |
3 4
|
syl |
|- ( ( card ` A ) = A -> Ord A ) |
6 |
|
ordom |
|- Ord _om |
7 |
|
ordtri2or |
|- ( ( Ord A /\ Ord _om ) -> ( A e. _om \/ _om C_ A ) ) |
8 |
5 6 7
|
sylancl |
|- ( ( card ` A ) = A -> ( A e. _om \/ _om C_ A ) ) |
9 |
8
|
ord |
|- ( ( card ` A ) = A -> ( -. A e. _om -> _om C_ A ) ) |
10 |
|
isinfcard |
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |
11 |
10
|
biimpi |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> A e. ran aleph ) |
12 |
11
|
expcom |
|- ( ( card ` A ) = A -> ( _om C_ A -> A e. ran aleph ) ) |
13 |
9 12
|
syld |
|- ( ( card ` A ) = A -> ( -. A e. _om -> A e. ran aleph ) ) |
14 |
13
|
orrd |
|- ( ( card ` A ) = A -> ( A e. _om \/ A e. ran aleph ) ) |
15 |
|
cardnn |
|- ( A e. _om -> ( card ` A ) = A ) |
16 |
10
|
bicomi |
|- ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
17 |
16
|
simprbi |
|- ( A e. ran aleph -> ( card ` A ) = A ) |
18 |
15 17
|
jaoi |
|- ( ( A e. _om \/ A e. ran aleph ) -> ( card ` A ) = A ) |
19 |
14 18
|
impbii |
|- ( ( card ` A ) = A <-> ( A e. _om \/ A e. ran aleph ) ) |
20 |
|
elun |
|- ( A e. ( _om u. ran aleph ) <-> ( A e. _om \/ A e. ran aleph ) ) |
21 |
19 20
|
bitr4i |
|- ( ( card ` A ) = A <-> A e. ( _om u. ran aleph ) ) |