| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscbn.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | iscbn.8 |  |-  D = ( IndMet ` U ) | 
						
							| 3 |  | fveq2 |  |-  ( u = U -> ( IndMet ` u ) = ( IndMet ` U ) ) | 
						
							| 4 | 3 2 | eqtr4di |  |-  ( u = U -> ( IndMet ` u ) = D ) | 
						
							| 5 |  | fveq2 |  |-  ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( u = U -> ( BaseSet ` u ) = X ) | 
						
							| 7 | 6 | fveq2d |  |-  ( u = U -> ( CMet ` ( BaseSet ` u ) ) = ( CMet ` X ) ) | 
						
							| 8 | 4 7 | eleq12d |  |-  ( u = U -> ( ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) <-> D e. ( CMet ` X ) ) ) | 
						
							| 9 |  | df-cbn |  |-  CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) } | 
						
							| 10 | 8 9 | elrab2 |  |-  ( U e. CBan <-> ( U e. NrmCVec /\ D e. ( CMet ` X ) ) ) |