| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscbn.x | 
							 |-  X = ( BaseSet ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							iscbn.8 | 
							 |-  D = ( IndMet ` U )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = U -> ( IndMet ` u ) = ( IndMet ` U ) )  | 
						
						
							| 4 | 
							
								3 2
							 | 
							eqtr4di | 
							 |-  ( u = U -> ( IndMet ` u ) = D )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eqtr4di | 
							 |-  ( u = U -> ( BaseSet ` u ) = X )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							 |-  ( u = U -> ( CMet ` ( BaseSet ` u ) ) = ( CMet ` X ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eleq12d | 
							 |-  ( u = U -> ( ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) <-> D e. ( CMet ` X ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-cbn | 
							 |-  CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) } | 
						
						
							| 10 | 
							
								8 9
							 | 
							elrab2 | 
							 |-  ( U e. CBan <-> ( U e. NrmCVec /\ D e. ( CMet ` X ) ) )  |