Step |
Hyp |
Ref |
Expression |
1 |
|
iscbn.x |
|- X = ( BaseSet ` U ) |
2 |
|
iscbn.8 |
|- D = ( IndMet ` U ) |
3 |
|
fveq2 |
|- ( u = U -> ( IndMet ` u ) = ( IndMet ` U ) ) |
4 |
3 2
|
eqtr4di |
|- ( u = U -> ( IndMet ` u ) = D ) |
5 |
|
fveq2 |
|- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
6 |
5 1
|
eqtr4di |
|- ( u = U -> ( BaseSet ` u ) = X ) |
7 |
6
|
fveq2d |
|- ( u = U -> ( CMet ` ( BaseSet ` u ) ) = ( CMet ` X ) ) |
8 |
4 7
|
eleq12d |
|- ( u = U -> ( ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) <-> D e. ( CMet ` X ) ) ) |
9 |
|
df-cbn |
|- CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) } |
10 |
8 9
|
elrab2 |
|- ( U e. CBan <-> ( U e. NrmCVec /\ D e. ( CMet ` X ) ) ) |