| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscgra.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							iscgra.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							iscgra.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							iscgra.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							iscgra.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							iscgra.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							iscgra.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							iscgra.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							iscgra.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							iscgra.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> a = <" A B C "> )  | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> x = x )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> b = <" D E F "> )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq1d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 1 ) = ( <" D E F "> ` 1 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> y = y )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							s3eqd | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" x ( b ` 1 ) y "> = <" x ( <" D E F "> ` 1 ) y "> )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							breq12d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> ) )  | 
						
						
							| 18 | 
							
								14
							 | 
							fveq2d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( K ` ( b ` 1 ) ) = ( K ` ( <" D E F "> ` 1 ) ) )  | 
						
						
							| 19 | 
							
								13
							 | 
							fveq1d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 0 ) = ( <" D E F "> ` 0 ) )  | 
						
						
							| 20 | 
							
								12 18 19
							 | 
							breq123d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( x ( K ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) ) )  | 
						
						
							| 21 | 
							
								13
							 | 
							fveq1d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 2 ) = ( <" D E F "> ` 2 ) )  | 
						
						
							| 22 | 
							
								15 18 21
							 | 
							breq123d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( y ( K ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) )  | 
						
						
							| 23 | 
							
								17 20 22
							 | 
							3anbi123d | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							2rexbidv | 
							 |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } | 
						
						
							| 26 | 
							
								24 25
							 | 
							brab2a | 
							 |-  ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) ) | 
						
						
							| 27 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> x = x )  | 
						
						
							| 28 | 
							
								
							 | 
							s3fv1 | 
							 |-  ( E e. P -> ( <" D E F "> ` 1 ) = E )  | 
						
						
							| 29 | 
							
								9 28
							 | 
							syl | 
							 |-  ( ph -> ( <" D E F "> ` 1 ) = E )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 1 ) = E )  | 
						
						
							| 31 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> y = y )  | 
						
						
							| 32 | 
							
								27 30 31
							 | 
							s3eqd | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> <" x ( <" D E F "> ` 1 ) y "> = <" x E y "> )  | 
						
						
							| 33 | 
							
								32
							 | 
							breq2d | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> <-> <" A B C "> ( cgrG ` G ) <" x E y "> ) )  | 
						
						
							| 34 | 
							
								30
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( K ` ( <" D E F "> ` 1 ) ) = ( K ` E ) )  | 
						
						
							| 35 | 
							
								
							 | 
							s3fv0 | 
							 |-  ( D e. P -> ( <" D E F "> ` 0 ) = D )  | 
						
						
							| 36 | 
							
								8 35
							 | 
							syl | 
							 |-  ( ph -> ( <" D E F "> ` 0 ) = D )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 0 ) = D )  | 
						
						
							| 38 | 
							
								27 34 37
							 | 
							breq123d | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) <-> x ( K ` E ) D ) )  | 
						
						
							| 39 | 
							
								
							 | 
							s3fv2 | 
							 |-  ( F e. P -> ( <" D E F "> ` 2 ) = F )  | 
						
						
							| 40 | 
							
								10 39
							 | 
							syl | 
							 |-  ( ph -> ( <" D E F "> ` 2 ) = F )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( <" D E F "> ` 2 ) = F )  | 
						
						
							| 42 | 
							
								31 34 41
							 | 
							breq123d | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) <-> y ( K ` E ) F ) )  | 
						
						
							| 43 | 
							
								33 38 42
							 | 
							3anbi123d | 
							 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							2rexbidva | 
							 |-  ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							anbi2d | 
							 |-  ( ph -> ( ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x ( <" D E F "> ` 1 ) y "> /\ x ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 0 ) /\ y ( K ` ( <" D E F "> ` 1 ) ) ( <" D E F "> ` 2 ) ) ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) )  | 
						
						
							| 46 | 
							
								26 45
							 | 
							bitrid | 
							 |-  ( ph -> ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) ) | 
						
						
							| 47 | 
							
								
							 | 
							elex | 
							 |-  ( G e. TarskiG -> G e. _V )  | 
						
						
							| 48 | 
							
								
							 | 
							simpl | 
							 |-  ( ( p = P /\ k = K ) -> p = P )  | 
						
						
							| 49 | 
							
								48
							 | 
							oveq1d | 
							 |-  ( ( p = P /\ k = K ) -> ( p ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							eleq2d | 
							 |-  ( ( p = P /\ k = K ) -> ( a e. ( p ^m ( 0 ..^ 3 ) ) <-> a e. ( P ^m ( 0 ..^ 3 ) ) ) )  | 
						
						
							| 51 | 
							
								49
							 | 
							eleq2d | 
							 |-  ( ( p = P /\ k = K ) -> ( b e. ( p ^m ( 0 ..^ 3 ) ) <-> b e. ( P ^m ( 0 ..^ 3 ) ) ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							anbi12d | 
							 |-  ( ( p = P /\ k = K ) -> ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) <-> ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							simpr | 
							 |-  ( ( p = P /\ k = K ) -> k = K )  | 
						
						
							| 54 | 
							
								53
							 | 
							fveq1d | 
							 |-  ( ( p = P /\ k = K ) -> ( k ` ( b ` 1 ) ) = ( K ` ( b ` 1 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							breqd | 
							 |-  ( ( p = P /\ k = K ) -> ( x ( k ` ( b ` 1 ) ) ( b ` 0 ) <-> x ( K ` ( b ` 1 ) ) ( b ` 0 ) ) )  | 
						
						
							| 56 | 
							
								54
							 | 
							breqd | 
							 |-  ( ( p = P /\ k = K ) -> ( y ( k ` ( b ` 1 ) ) ( b ` 2 ) <-> y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							3anbi23d | 
							 |-  ( ( p = P /\ k = K ) -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) )  | 
						
						
							| 58 | 
							
								48 57
							 | 
							rexeqbidv | 
							 |-  ( ( p = P /\ k = K ) -> ( E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) )  | 
						
						
							| 59 | 
							
								48 58
							 | 
							rexeqbidv | 
							 |-  ( ( p = P /\ k = K ) -> ( E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) )  | 
						
						
							| 60 | 
							
								52 59
							 | 
							anbi12d | 
							 |-  ( ( p = P /\ k = K ) -> ( ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) )  | 
						
						
							| 61 | 
							
								1 3 60
							 | 
							sbcie2s | 
							 |-  ( g = G -> ( [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							opabbidv | 
							 |-  ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 63 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = G -> ( cgrG ` g ) = ( cgrG ` G ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							breqd | 
							 |-  ( g = G -> ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> <-> a ( cgrG ` G ) <" x ( b ` 1 ) y "> ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							3anbi1d | 
							 |-  ( g = G -> ( ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							2rexbidv | 
							 |-  ( g = G -> ( E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) <-> E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							anbi2d | 
							 |-  ( g = G -> ( ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							opabbidv | 
							 |-  ( g = G -> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 69 | 
							
								62 68
							 | 
							eqtrd | 
							 |-  ( g = G -> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 70 | 
							
								
							 | 
							df-cgra | 
							 |-  cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 71 | 
							
								
							 | 
							ovex | 
							 |-  ( P ^m ( 0 ..^ 3 ) ) e. _V  | 
						
						
							| 72 | 
							
								71 71
							 | 
							xpex | 
							 |-  ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V  | 
						
						
							| 73 | 
							
								
							 | 
							opabssxp | 
							 |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } C_ ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
						
							| 74 | 
							
								72 73
							 | 
							ssexi | 
							 |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } e. _V | 
						
						
							| 75 | 
							
								69 70 74
							 | 
							fvmpt | 
							 |-  ( G e. _V -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 76 | 
							
								4 47 75
							 | 
							3syl | 
							 |-  ( ph -> ( cgrA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 77 | 
							
								76
							 | 
							breqd | 
							 |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( a ( cgrG ` G ) <" x ( b ` 1 ) y "> /\ x ( K ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( K ` ( b ` 1 ) ) ( b ` 2 ) ) ) } <" D E F "> ) ) | 
						
						
							| 78 | 
							
								5 6 7
							 | 
							s3cld | 
							 |-  ( ph -> <" A B C "> e. Word P )  | 
						
						
							| 79 | 
							
								
							 | 
							s3len | 
							 |-  ( # ` <" A B C "> ) = 3  | 
						
						
							| 80 | 
							
								1
							 | 
							fvexi | 
							 |-  P e. _V  | 
						
						
							| 81 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 82 | 
							
								
							 | 
							wrdmap | 
							 |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) )  | 
						
						
							| 83 | 
							
								80 81 82
							 | 
							mp2an | 
							 |-  ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 84 | 
							
								78 79 83
							 | 
							sylanblc | 
							 |-  ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 85 | 
							
								8 9 10
							 | 
							s3cld | 
							 |-  ( ph -> <" D E F "> e. Word P )  | 
						
						
							| 86 | 
							
								
							 | 
							s3len | 
							 |-  ( # ` <" D E F "> ) = 3  | 
						
						
							| 87 | 
							
								
							 | 
							wrdmap | 
							 |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) )  | 
						
						
							| 88 | 
							
								80 81 87
							 | 
							mp2an | 
							 |-  ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 89 | 
							
								85 86 88
							 | 
							sylanblc | 
							 |-  ( ph -> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 90 | 
							
								84 89
							 | 
							jca | 
							 |-  ( ph -> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							biantrurd | 
							 |-  ( ph -> ( E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) )  | 
						
						
							| 92 | 
							
								46 77 91
							 | 
							3bitr4d | 
							 |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) )  |