| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscgrg.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							iscgrg.m | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							iscgrg.e | 
							 |-  .~ = ( cgrG ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							elex | 
							 |-  ( G e. V -> G e. _V )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = G -> ( Base ` g ) = ( Base ` G ) )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eqtr4di | 
							 |-  ( g = G -> ( Base ` g ) = P )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq1d | 
							 |-  ( g = G -> ( ( Base ` g ) ^pm RR ) = ( P ^pm RR ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eleq2d | 
							 |-  ( g = G -> ( a e. ( ( Base ` g ) ^pm RR ) <-> a e. ( P ^pm RR ) ) )  | 
						
						
							| 9 | 
							
								7
							 | 
							eleq2d | 
							 |-  ( g = G -> ( b e. ( ( Base ` g ) ^pm RR ) <-> b e. ( P ^pm RR ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							anbi12d | 
							 |-  ( g = G -> ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) <-> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = G -> ( dist ` g ) = ( dist ` G ) )  | 
						
						
							| 12 | 
							
								11 2
							 | 
							eqtr4di | 
							 |-  ( g = G -> ( dist ` g ) = .- )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveqd | 
							 |-  ( g = G -> ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( a ` i ) .- ( a ` j ) ) )  | 
						
						
							| 14 | 
							
								12
							 | 
							oveqd | 
							 |-  ( g = G -> ( ( b ` i ) ( dist ` g ) ( b ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqeq12d | 
							 |-  ( g = G -> ( ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							2ralbidv | 
							 |-  ( g = G -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							 |-  ( g = G -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) <-> ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							anbi12d | 
							 |-  ( g = G -> ( ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) <-> ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							opabbidv | 
							 |-  ( g = G -> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
						
							| 20 | 
							
								
							 | 
							df-cgrg | 
							 |-  cgrG = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } ) | 
						
						
							| 21 | 
							
								
							 | 
							df-xp | 
							 |-  ( ( P ^pm RR ) X. ( P ^pm RR ) ) = { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } | 
						
						
							| 22 | 
							
								
							 | 
							ovex | 
							 |-  ( P ^pm RR ) e. _V  | 
						
						
							| 23 | 
							
								22 22
							 | 
							xpex | 
							 |-  ( ( P ^pm RR ) X. ( P ^pm RR ) ) e. _V  | 
						
						
							| 24 | 
							
								21 23
							 | 
							eqeltrri | 
							 |-  { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } e. _V | 
						
						
							| 25 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) -> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ssopab2i | 
							 |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } C_ { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } | 
						
						
							| 27 | 
							
								24 26
							 | 
							ssexi | 
							 |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } e. _V | 
						
						
							| 28 | 
							
								19 20 27
							 | 
							fvmpt | 
							 |-  ( G e. _V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
						
							| 29 | 
							
								4 28
							 | 
							syl | 
							 |-  ( G e. V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
						
							| 30 | 
							
								3 29
							 | 
							eqtrid | 
							 |-  ( G e. V -> .~ = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
						
							| 31 | 
							
								30
							 | 
							breqd | 
							 |-  ( G e. V -> ( A .~ B <-> A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B ) ) | 
						
						
							| 32 | 
							
								
							 | 
							dmeq | 
							 |-  ( a = A -> dom a = dom A )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq1d | 
							 |-  ( a = A -> ( dom a = dom b <-> dom A = dom b ) )  | 
						
						
							| 34 | 
							
								32
							 | 
							adantr | 
							 |-  ( ( a = A /\ i e. dom a ) -> dom a = dom A )  | 
						
						
							| 35 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> a = A )  | 
						
						
							| 36 | 
							
								35
							 | 
							fveq1d | 
							 |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` i ) = ( A ` i ) )  | 
						
						
							| 37 | 
							
								35
							 | 
							fveq1d | 
							 |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` j ) = ( A ` j ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							oveq12d | 
							 |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( a ` i ) .- ( a ` j ) ) = ( ( A ` i ) .- ( A ` j ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							eqeq1d | 
							 |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) )  | 
						
						
							| 40 | 
							
								34 39
							 | 
							raleqbidva | 
							 |-  ( ( a = A /\ i e. dom a ) -> ( A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							raleqbidva | 
							 |-  ( a = A -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) )  | 
						
						
							| 42 | 
							
								33 41
							 | 
							anbi12d | 
							 |-  ( a = A -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							dmeq | 
							 |-  ( b = B -> dom b = dom B )  | 
						
						
							| 44 | 
							
								43
							 | 
							eqeq2d | 
							 |-  ( b = B -> ( dom A = dom b <-> dom A = dom B ) )  | 
						
						
							| 45 | 
							
								
							 | 
							fveq1 | 
							 |-  ( b = B -> ( b ` i ) = ( B ` i ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fveq1 | 
							 |-  ( b = B -> ( b ` j ) = ( B ` j ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							oveq12d | 
							 |-  ( b = B -> ( ( b ` i ) .- ( b ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							eqeq2d | 
							 |-  ( b = B -> ( ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							2ralbidv | 
							 |-  ( b = B -> ( A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) )  | 
						
						
							| 50 | 
							
								44 49
							 | 
							anbi12d | 
							 |-  ( b = B -> ( ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) )  | 
						
						
							| 51 | 
							
								42 50
							 | 
							sylan9bb | 
							 |-  ( ( a = A /\ b = B ) -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							 |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } | 
						
						
							| 53 | 
							
								51 52
							 | 
							brab2a | 
							 |-  ( A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) | 
						
						
							| 54 | 
							
								31 53
							 | 
							bitrdi | 
							 |-  ( G e. V -> ( A .~ B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) )  |