Step |
Hyp |
Ref |
Expression |
1 |
|
iscgrg.p |
|- P = ( Base ` G ) |
2 |
|
iscgrg.m |
|- .- = ( dist ` G ) |
3 |
|
iscgrg.e |
|- .~ = ( cgrG ` G ) |
4 |
|
elex |
|- ( G e. V -> G e. _V ) |
5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
7 |
6
|
oveq1d |
|- ( g = G -> ( ( Base ` g ) ^pm RR ) = ( P ^pm RR ) ) |
8 |
7
|
eleq2d |
|- ( g = G -> ( a e. ( ( Base ` g ) ^pm RR ) <-> a e. ( P ^pm RR ) ) ) |
9 |
7
|
eleq2d |
|- ( g = G -> ( b e. ( ( Base ` g ) ^pm RR ) <-> b e. ( P ^pm RR ) ) ) |
10 |
8 9
|
anbi12d |
|- ( g = G -> ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) <-> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) ) ) |
11 |
|
fveq2 |
|- ( g = G -> ( dist ` g ) = ( dist ` G ) ) |
12 |
11 2
|
eqtr4di |
|- ( g = G -> ( dist ` g ) = .- ) |
13 |
12
|
oveqd |
|- ( g = G -> ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( a ` i ) .- ( a ` j ) ) ) |
14 |
12
|
oveqd |
|- ( g = G -> ( ( b ` i ) ( dist ` g ) ( b ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) |
15 |
13 14
|
eqeq12d |
|- ( g = G -> ( ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) |
16 |
15
|
2ralbidv |
|- ( g = G -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) |
17 |
16
|
anbi2d |
|- ( g = G -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) <-> ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) |
18 |
10 17
|
anbi12d |
|- ( g = G -> ( ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) <-> ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) ) |
19 |
18
|
opabbidv |
|- ( g = G -> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) |
20 |
|
df-cgrg |
|- cgrG = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } ) |
21 |
|
df-xp |
|- ( ( P ^pm RR ) X. ( P ^pm RR ) ) = { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } |
22 |
|
ovex |
|- ( P ^pm RR ) e. _V |
23 |
22 22
|
xpex |
|- ( ( P ^pm RR ) X. ( P ^pm RR ) ) e. _V |
24 |
21 23
|
eqeltrri |
|- { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } e. _V |
25 |
|
simpl |
|- ( ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) -> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) ) |
26 |
25
|
ssopab2i |
|- { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } C_ { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } |
27 |
24 26
|
ssexi |
|- { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } e. _V |
28 |
19 20 27
|
fvmpt |
|- ( G e. _V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) |
29 |
4 28
|
syl |
|- ( G e. V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) |
30 |
3 29
|
syl5eq |
|- ( G e. V -> .~ = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) |
31 |
30
|
breqd |
|- ( G e. V -> ( A .~ B <-> A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B ) ) |
32 |
|
dmeq |
|- ( a = A -> dom a = dom A ) |
33 |
32
|
eqeq1d |
|- ( a = A -> ( dom a = dom b <-> dom A = dom b ) ) |
34 |
32
|
adantr |
|- ( ( a = A /\ i e. dom a ) -> dom a = dom A ) |
35 |
|
simpll |
|- ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> a = A ) |
36 |
35
|
fveq1d |
|- ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` i ) = ( A ` i ) ) |
37 |
35
|
fveq1d |
|- ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` j ) = ( A ` j ) ) |
38 |
36 37
|
oveq12d |
|- ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( a ` i ) .- ( a ` j ) ) = ( ( A ` i ) .- ( A ` j ) ) ) |
39 |
38
|
eqeq1d |
|- ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) |
40 |
34 39
|
raleqbidva |
|- ( ( a = A /\ i e. dom a ) -> ( A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) |
41 |
32 40
|
raleqbidva |
|- ( a = A -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) |
42 |
33 41
|
anbi12d |
|- ( a = A -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) |
43 |
|
dmeq |
|- ( b = B -> dom b = dom B ) |
44 |
43
|
eqeq2d |
|- ( b = B -> ( dom A = dom b <-> dom A = dom B ) ) |
45 |
|
fveq1 |
|- ( b = B -> ( b ` i ) = ( B ` i ) ) |
46 |
|
fveq1 |
|- ( b = B -> ( b ` j ) = ( B ` j ) ) |
47 |
45 46
|
oveq12d |
|- ( b = B -> ( ( b ` i ) .- ( b ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) |
48 |
47
|
eqeq2d |
|- ( b = B -> ( ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) |
49 |
48
|
2ralbidv |
|- ( b = B -> ( A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) |
50 |
44 49
|
anbi12d |
|- ( b = B -> ( ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) |
51 |
42 50
|
sylan9bb |
|- ( ( a = A /\ b = B ) -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) |
52 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } |
53 |
51 52
|
brab2a |
|- ( A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) |
54 |
31 53
|
bitrdi |
|- ( G e. V -> ( A .~ B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) ) |