Step |
Hyp |
Ref |
Expression |
1 |
|
iscgrg.p |
|- P = ( Base ` G ) |
2 |
|
iscgrg.m |
|- .- = ( dist ` G ) |
3 |
|
iscgrg.e |
|- .~ = ( cgrG ` G ) |
4 |
|
iscgrgd.g |
|- ( ph -> G e. V ) |
5 |
|
iscgrgd.d |
|- ( ph -> D C_ RR ) |
6 |
|
iscgrgd.a |
|- ( ph -> A : D --> P ) |
7 |
|
iscgrgd.b |
|- ( ph -> B : D --> P ) |
8 |
1
|
fvexi |
|- P e. _V |
9 |
|
reex |
|- RR e. _V |
10 |
|
elpm2r |
|- ( ( ( P e. _V /\ RR e. _V ) /\ ( A : D --> P /\ D C_ RR ) ) -> A e. ( P ^pm RR ) ) |
11 |
8 9 10
|
mpanl12 |
|- ( ( A : D --> P /\ D C_ RR ) -> A e. ( P ^pm RR ) ) |
12 |
6 5 11
|
syl2anc |
|- ( ph -> A e. ( P ^pm RR ) ) |
13 |
|
elpm2r |
|- ( ( ( P e. _V /\ RR e. _V ) /\ ( B : D --> P /\ D C_ RR ) ) -> B e. ( P ^pm RR ) ) |
14 |
8 9 13
|
mpanl12 |
|- ( ( B : D --> P /\ D C_ RR ) -> B e. ( P ^pm RR ) ) |
15 |
7 5 14
|
syl2anc |
|- ( ph -> B e. ( P ^pm RR ) ) |
16 |
12 15
|
jca |
|- ( ph -> ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) ) |
17 |
16
|
biantrurd |
|- ( ph -> ( ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) ) |
18 |
6
|
fdmd |
|- ( ph -> dom A = D ) |
19 |
7
|
fdmd |
|- ( ph -> dom B = D ) |
20 |
18 19
|
eqtr4d |
|- ( ph -> dom A = dom B ) |
21 |
20
|
biantrurd |
|- ( ph -> ( A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) |
22 |
1 2 3
|
iscgrg |
|- ( G e. V -> ( A .~ B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) ) |
23 |
4 22
|
syl |
|- ( ph -> ( A .~ B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) ) |
24 |
17 21 23
|
3bitr4rd |
|- ( ph -> ( A .~ B <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) |