Step |
Hyp |
Ref |
Expression |
1 |
|
isch |
|- ( H e. CH <-> ( H e. SH /\ ( ~~>v " ( H ^m NN ) ) C_ H ) ) |
2 |
|
alcom |
|- ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
3 |
|
19.23v |
|- ( A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
4 |
|
vex |
|- x e. _V |
5 |
4
|
elima2 |
|- ( x e. ( ~~>v " ( H ^m NN ) ) <-> E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) ) |
6 |
5
|
imbi1i |
|- ( ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) <-> ( E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
7 |
3 6
|
bitr4i |
|- ( A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
8 |
7
|
albii |
|- ( A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. x ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
9 |
|
dfss2 |
|- ( ( ~~>v " ( H ^m NN ) ) C_ H <-> A. x ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
10 |
8 9
|
bitr4i |
|- ( A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ~~>v " ( H ^m NN ) ) C_ H ) |
11 |
2 10
|
bitri |
|- ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ~~>v " ( H ^m NN ) ) C_ H ) |
12 |
|
nnex |
|- NN e. _V |
13 |
|
elmapg |
|- ( ( H e. SH /\ NN e. _V ) -> ( f e. ( H ^m NN ) <-> f : NN --> H ) ) |
14 |
12 13
|
mpan2 |
|- ( H e. SH -> ( f e. ( H ^m NN ) <-> f : NN --> H ) ) |
15 |
14
|
anbi1d |
|- ( H e. SH -> ( ( f e. ( H ^m NN ) /\ f ~~>v x ) <-> ( f : NN --> H /\ f ~~>v x ) ) ) |
16 |
15
|
imbi1d |
|- ( H e. SH -> ( ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
17 |
16
|
2albidv |
|- ( H e. SH -> ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
18 |
11 17
|
bitr3id |
|- ( H e. SH -> ( ( ~~>v " ( H ^m NN ) ) C_ H <-> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
19 |
18
|
pm5.32i |
|- ( ( H e. SH /\ ( ~~>v " ( H ^m NN ) ) C_ H ) <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
20 |
1 19
|
bitri |
|- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |