| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isch2 |  |-  ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) | 
						
							| 2 |  | ax-hcompl |  |-  ( f e. Cauchy -> E. x e. ~H f ~~>v x ) | 
						
							| 3 |  | rexex |  |-  ( E. x e. ~H f ~~>v x -> E. x f ~~>v x ) | 
						
							| 4 | 2 3 | syl |  |-  ( f e. Cauchy -> E. x f ~~>v x ) | 
						
							| 5 |  | 19.29 |  |-  ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ E. x f ~~>v x ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) | 
						
							| 7 |  | id |  |-  ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ ( f : NN --> H /\ f ~~>v x ) ) -> x e. H ) | 
						
							| 9 | 8 | an12s |  |-  ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> x e. H ) | 
						
							| 10 |  | simprr |  |-  ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> f ~~>v x ) | 
						
							| 11 | 9 10 | jca |  |-  ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> ( x e. H /\ f ~~>v x ) ) | 
						
							| 12 | 11 | ex |  |-  ( f : NN --> H -> ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( x e. H /\ f ~~>v x ) ) ) | 
						
							| 13 | 12 | eximdv |  |-  ( f : NN --> H -> ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> E. x ( x e. H /\ f ~~>v x ) ) ) | 
						
							| 14 | 13 | com12 |  |-  ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x ( x e. H /\ f ~~>v x ) ) ) | 
						
							| 15 |  | df-rex |  |-  ( E. x e. H f ~~>v x <-> E. x ( x e. H /\ f ~~>v x ) ) | 
						
							| 16 | 14 15 | imbitrrdi |  |-  ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) | 
						
							| 18 | 17 | ex |  |-  ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 19 |  | nfv |  |-  F/ x f e. Cauchy | 
						
							| 20 |  | nfv |  |-  F/ x f : NN --> H | 
						
							| 21 |  | nfre1 |  |-  F/ x E. x e. H f ~~>v x | 
						
							| 22 | 20 21 | nfim |  |-  F/ x ( f : NN --> H -> E. x e. H f ~~>v x ) | 
						
							| 23 | 19 22 | nfim |  |-  F/ x ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) | 
						
							| 24 |  | bi2.04 |  |-  ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) <-> ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) ) | 
						
							| 25 |  | hlimcaui |  |-  ( f ~~>v x -> f e. Cauchy ) | 
						
							| 26 | 25 | imim1i |  |-  ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> E. x e. H f ~~>v x ) ) | 
						
							| 27 |  | rexex |  |-  ( E. x e. H f ~~>v x -> E. x f ~~>v x ) | 
						
							| 28 |  | hlimeui |  |-  ( E. x f ~~>v x <-> E! x f ~~>v x ) | 
						
							| 29 | 27 28 | sylib |  |-  ( E. x e. H f ~~>v x -> E! x f ~~>v x ) | 
						
							| 30 |  | exancom |  |-  ( E. x ( x e. H /\ f ~~>v x ) <-> E. x ( f ~~>v x /\ x e. H ) ) | 
						
							| 31 | 15 30 | sylbb |  |-  ( E. x e. H f ~~>v x -> E. x ( f ~~>v x /\ x e. H ) ) | 
						
							| 32 |  | eupick |  |-  ( ( E! x f ~~>v x /\ E. x ( f ~~>v x /\ x e. H ) ) -> ( f ~~>v x -> x e. H ) ) | 
						
							| 33 | 29 31 32 | syl2anc |  |-  ( E. x e. H f ~~>v x -> ( f ~~>v x -> x e. H ) ) | 
						
							| 34 | 26 33 | syli |  |-  ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> x e. H ) ) | 
						
							| 35 | 34 | imim2i |  |-  ( ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) | 
						
							| 36 | 24 35 | sylbi |  |-  ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) | 
						
							| 37 | 36 | impd |  |-  ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) | 
						
							| 38 | 23 37 | alrimi |  |-  ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) | 
						
							| 39 | 18 38 | impbii |  |-  ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 40 | 39 | albii |  |-  ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 41 |  | df-ral |  |-  ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 42 | 40 41 | bitr4i |  |-  ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) | 
						
							| 43 | 42 | anbi2i |  |-  ( ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 44 | 1 43 | bitri |  |-  ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |