Step |
Hyp |
Ref |
Expression |
1 |
|
isclat.b |
|- B = ( Base ` K ) |
2 |
|
isclat.u |
|- U = ( lub ` K ) |
3 |
|
isclat.g |
|- G = ( glb ` K ) |
4 |
|
fveq2 |
|- ( l = K -> ( lub ` l ) = ( lub ` K ) ) |
5 |
4 2
|
eqtr4di |
|- ( l = K -> ( lub ` l ) = U ) |
6 |
5
|
dmeqd |
|- ( l = K -> dom ( lub ` l ) = dom U ) |
7 |
|
fveq2 |
|- ( l = K -> ( Base ` l ) = ( Base ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( l = K -> ( Base ` l ) = B ) |
9 |
8
|
pweqd |
|- ( l = K -> ~P ( Base ` l ) = ~P B ) |
10 |
6 9
|
eqeq12d |
|- ( l = K -> ( dom ( lub ` l ) = ~P ( Base ` l ) <-> dom U = ~P B ) ) |
11 |
|
fveq2 |
|- ( l = K -> ( glb ` l ) = ( glb ` K ) ) |
12 |
11 3
|
eqtr4di |
|- ( l = K -> ( glb ` l ) = G ) |
13 |
12
|
dmeqd |
|- ( l = K -> dom ( glb ` l ) = dom G ) |
14 |
13 9
|
eqeq12d |
|- ( l = K -> ( dom ( glb ` l ) = ~P ( Base ` l ) <-> dom G = ~P B ) ) |
15 |
10 14
|
anbi12d |
|- ( l = K -> ( ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) <-> ( dom U = ~P B /\ dom G = ~P B ) ) ) |
16 |
|
df-clat |
|- CLat = { l e. Poset | ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) } |
17 |
15 16
|
elrab2 |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |