| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isclat.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							isclat.u | 
							 |-  U = ( lub ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							isclat.g | 
							 |-  G = ( glb ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( l = K -> ( lub ` l ) = ( lub ` K ) )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtr4di | 
							 |-  ( l = K -> ( lub ` l ) = U )  | 
						
						
							| 6 | 
							
								5
							 | 
							dmeqd | 
							 |-  ( l = K -> dom ( lub ` l ) = dom U )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							 |-  ( l = K -> ( Base ` l ) = ( Base ` K ) )  | 
						
						
							| 8 | 
							
								7 1
							 | 
							eqtr4di | 
							 |-  ( l = K -> ( Base ` l ) = B )  | 
						
						
							| 9 | 
							
								8
							 | 
							pweqd | 
							 |-  ( l = K -> ~P ( Base ` l ) = ~P B )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqeq12d | 
							 |-  ( l = K -> ( dom ( lub ` l ) = ~P ( Base ` l ) <-> dom U = ~P B ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( l = K -> ( glb ` l ) = ( glb ` K ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							eqtr4di | 
							 |-  ( l = K -> ( glb ` l ) = G )  | 
						
						
							| 13 | 
							
								12
							 | 
							dmeqd | 
							 |-  ( l = K -> dom ( glb ` l ) = dom G )  | 
						
						
							| 14 | 
							
								13 9
							 | 
							eqeq12d | 
							 |-  ( l = K -> ( dom ( glb ` l ) = ~P ( Base ` l ) <-> dom G = ~P B ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							anbi12d | 
							 |-  ( l = K -> ( ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) <-> ( dom U = ~P B /\ dom G = ~P B ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							df-clat | 
							 |-  CLat = { l e. Poset | ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) } | 
						
						
							| 17 | 
							
								15 16
							 | 
							elrab2 | 
							 |-  ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) )  |