| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscld.1 | 
							 |-  X = U. J  | 
						
						
							| 2 | 
							
								1
							 | 
							cldval | 
							 |-  ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( J e. Top -> ( S e. ( Clsd ` J ) <-> S e. { x e. ~P X | ( X \ x ) e. J } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							difeq2 | 
							 |-  ( x = S -> ( X \ x ) = ( X \ S ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1d | 
							 |-  ( x = S -> ( ( X \ x ) e. J <-> ( X \ S ) e. J ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elrab | 
							 |-  ( S e. { x e. ~P X | ( X \ x ) e. J } <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) | 
						
						
							| 7 | 
							
								3 6
							 | 
							bitrdi | 
							 |-  ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							topopn | 
							 |-  ( J e. Top -> X e. J )  | 
						
						
							| 9 | 
							
								
							 | 
							elpw2g | 
							 |-  ( X e. J -> ( S e. ~P X <-> S C_ X ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( J e. Top -> ( S e. ~P X <-> S C_ X ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							anbi1d | 
							 |-  ( J e. Top -> ( ( S e. ~P X /\ ( X \ S ) e. J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							bitrd | 
							 |-  ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) )  |