Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
|- X = U. J |
2 |
1
|
cldval |
|- ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) |
3 |
2
|
eleq2d |
|- ( J e. Top -> ( S e. ( Clsd ` J ) <-> S e. { x e. ~P X | ( X \ x ) e. J } ) ) |
4 |
|
difeq2 |
|- ( x = S -> ( X \ x ) = ( X \ S ) ) |
5 |
4
|
eleq1d |
|- ( x = S -> ( ( X \ x ) e. J <-> ( X \ S ) e. J ) ) |
6 |
5
|
elrab |
|- ( S e. { x e. ~P X | ( X \ x ) e. J } <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) |
7 |
3 6
|
bitrdi |
|- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) ) |
8 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
9 |
|
elpw2g |
|- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
10 |
8 9
|
syl |
|- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
11 |
10
|
anbi1d |
|- ( J e. Top -> ( ( S e. ~P X /\ ( X \ S ) e. J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |
12 |
7 11
|
bitrd |
|- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |