Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscld.1 | |- X = U. J |
|
Assertion | iscld2 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( X \ S ) e. J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | |- X = U. J |
|
2 | 1 | iscld | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |
3 | 2 | baibd | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( X \ S ) e. J ) ) |