Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
1
|
iscld3 |
|- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) |
3 |
|
eqss |
|- ( ( ( cls ` J ) ` S ) = S <-> ( ( ( cls ` J ) ` S ) C_ S /\ S C_ ( ( cls ` J ) ` S ) ) ) |
4 |
1
|
sscls |
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
5 |
4
|
biantrud |
|- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ S <-> ( ( ( cls ` J ) ` S ) C_ S /\ S C_ ( ( cls ` J ) ` S ) ) ) ) |
6 |
3 5
|
bitr4id |
|- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( ( cls ` J ) ` S ) C_ S ) ) |
7 |
2 6
|
bitrd |
|- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |