Step |
Hyp |
Ref |
Expression |
1 |
|
isclm.f |
|- F = ( Scalar ` W ) |
2 |
|
isclm.k |
|- K = ( Base ` F ) |
3 |
|
fvexd |
|- ( w = W -> ( Scalar ` w ) e. _V ) |
4 |
|
fvexd |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) |
5 |
|
id |
|- ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) |
6 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
7 |
6 1
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
8 |
5 7
|
sylan9eqr |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) |
9 |
8
|
adantr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) |
10 |
|
id |
|- ( k = ( Base ` f ) -> k = ( Base ` f ) ) |
11 |
8
|
fveq2d |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) |
12 |
11 2
|
eqtr4di |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) |
13 |
10 12
|
sylan9eqr |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) |
14 |
13
|
oveq2d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) |
15 |
9 14
|
eqeq12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) |
16 |
13
|
eleq1d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) ) |
17 |
15 16
|
anbi12d |
|- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
18 |
4 17
|
sbcied |
|- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
19 |
3 18
|
sbcied |
|- ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
20 |
|
df-clm |
|- CMod = { w e. LMod | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) } |
21 |
19 20
|
elrab2 |
|- ( W e. CMod <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
22 |
|
3anass |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
23 |
21 22
|
bitr4i |
|- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |