Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
2 |
|
simp1 |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. LMod ) |
3 |
|
simp2 |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s K ) ) |
4 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
5 |
4
|
subrgbas |
|- ( K e. ( SubRing ` CCfld ) -> K = ( Base ` ( CCfld |`s K ) ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` ( CCfld |`s K ) ) ) |
7 |
3
|
fveq2d |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) |
8 |
6 7
|
eqtr4d |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` F ) ) |
9 |
8
|
oveq2d |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( CCfld |`s K ) = ( CCfld |`s ( Base ` F ) ) ) |
10 |
3 9
|
eqtrd |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
11 |
|
simp3 |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K e. ( SubRing ` CCfld ) ) |
12 |
8 11
|
eqeltrrd |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
13 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
14 |
1 13
|
isclm |
|- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
15 |
2 10 12 14
|
syl3anbrc |
|- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. CMod ) |