| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwlke.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isclwlke.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | isclwlk |  |-  ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 4 | 1 2 | upgriswlk |  |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 5 | 4 | anbi1d |  |-  ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) | 
						
							| 6 |  | 3an4anass |  |-  ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) | 
						
							| 7 | 5 6 | bitrdi |  |-  ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) | 
						
							| 8 | 3 7 | bitrid |  |-  ( G e. UPGraph -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |