Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
clwwlk.e |
|- E = ( Edg ` G ) |
3 |
|
neeq1 |
|- ( w = W -> ( w =/= (/) <-> W =/= (/) ) ) |
4 |
|
fveq2 |
|- ( w = W -> ( # ` w ) = ( # ` W ) ) |
5 |
4
|
oveq1d |
|- ( w = W -> ( ( # ` w ) - 1 ) = ( ( # ` W ) - 1 ) ) |
6 |
5
|
oveq2d |
|- ( w = W -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
7 |
|
fveq1 |
|- ( w = W -> ( w ` i ) = ( W ` i ) ) |
8 |
|
fveq1 |
|- ( w = W -> ( w ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
9 |
7 8
|
preq12d |
|- ( w = W -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( W ` i ) , ( W ` ( i + 1 ) ) } ) |
10 |
9
|
eleq1d |
|- ( w = W -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E <-> { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
11 |
6 10
|
raleqbidv |
|- ( w = W -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
12 |
|
fveq2 |
|- ( w = W -> ( lastS ` w ) = ( lastS ` W ) ) |
13 |
|
fveq1 |
|- ( w = W -> ( w ` 0 ) = ( W ` 0 ) ) |
14 |
12 13
|
preq12d |
|- ( w = W -> { ( lastS ` w ) , ( w ` 0 ) } = { ( lastS ` W ) , ( W ` 0 ) } ) |
15 |
14
|
eleq1d |
|- ( w = W -> ( { ( lastS ` w ) , ( w ` 0 ) } e. E <-> { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
16 |
3 11 15
|
3anbi123d |
|- ( w = W -> ( ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) <-> ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
17 |
16
|
elrab |
|- ( W e. { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } <-> ( W e. Word V /\ ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
18 |
1 2
|
clwwlk |
|- ( ClWWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } |
19 |
18
|
eleq2i |
|- ( W e. ( ClWWalks ` G ) <-> W e. { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } ) |
20 |
|
3anass |
|- ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
21 |
|
anass |
|- ( ( ( W e. Word V /\ W =/= (/) ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) <-> ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
22 |
|
3anass |
|- ( ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
23 |
22
|
bicomi |
|- ( ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) <-> ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
24 |
23
|
anbi2i |
|- ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) <-> ( W e. Word V /\ ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
25 |
20 21 24
|
3bitri |
|- ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W e. Word V /\ ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
26 |
17 19 25
|
3bitr4i |
|- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |