| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
elfvex |
|- ( D e. ( CMet ` X ) -> X e. _V ) |
| 3 |
|
elfvex |
|- ( D e. ( Met ` X ) -> X e. _V ) |
| 4 |
3
|
adantr |
|- ( ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) -> X e. _V ) |
| 5 |
|
fveq2 |
|- ( x = X -> ( Met ` x ) = ( Met ` X ) ) |
| 6 |
5
|
rabeqdv |
|- ( x = X -> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 7 |
|
df-cmet |
|- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 8 |
|
fvex |
|- ( Met ` X ) e. _V |
| 9 |
8
|
rabex |
|- { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } e. _V |
| 10 |
6 7 9
|
fvmpt |
|- ( X e. _V -> ( CMet ` X ) = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 11 |
10
|
eleq2d |
|- ( X e. _V -> ( D e. ( CMet ` X ) <-> D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) ) |
| 12 |
|
fveq2 |
|- ( d = D -> ( CauFil ` d ) = ( CauFil ` D ) ) |
| 13 |
|
fveq2 |
|- ( d = D -> ( MetOpen ` d ) = ( MetOpen ` D ) ) |
| 14 |
13 1
|
eqtr4di |
|- ( d = D -> ( MetOpen ` d ) = J ) |
| 15 |
14
|
oveq1d |
|- ( d = D -> ( ( MetOpen ` d ) fLim f ) = ( J fLim f ) ) |
| 16 |
15
|
neeq1d |
|- ( d = D -> ( ( ( MetOpen ` d ) fLim f ) =/= (/) <-> ( J fLim f ) =/= (/) ) ) |
| 17 |
12 16
|
raleqbidv |
|- ( d = D -> ( A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| 18 |
17
|
elrab |
|- ( D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| 19 |
11 18
|
bitrdi |
|- ( X e. _V -> ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) ) |
| 20 |
2 4 19
|
pm5.21nii |
|- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |