| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet2.1 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 3 | 1 | cmetcau |  |-  ( ( D e. ( CMet ` X ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) | 
						
							| 4 | 3 | ex |  |-  ( D e. ( CMet ` X ) -> ( f e. ( Cau ` D ) -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 5 | 4 | ssrdv |  |-  ( D e. ( CMet ` X ) -> ( Cau ` D ) C_ dom ( ~~>t ` J ) ) | 
						
							| 6 | 2 5 | jca |  |-  ( D e. ( CMet ` X ) -> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) | 
						
							| 7 |  | ssel2 |  |-  ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) | 
						
							| 8 | 7 | a1d |  |-  ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 9 | 8 | ralrimiva |  |-  ( ( Cau ` D ) C_ dom ( ~~>t ` J ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 11 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 12 |  | 1zzd |  |-  ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> 1 e. ZZ ) | 
						
							| 13 |  | simpl |  |-  ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( Met ` X ) ) | 
						
							| 14 | 11 1 12 13 | iscmet3 |  |-  ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) | 
						
							| 15 | 10 14 | mpbird |  |-  ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( CMet ` X ) ) | 
						
							| 16 | 6 15 | impbii |  |-  ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |