| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3i.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | iscmet3i.3 |  |-  D e. ( Met ` X ) | 
						
							| 3 |  | iscmet3i.4 |  |-  ( ( f e. ( Cau ` D ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` J ) ) | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 6 | 2 | a1i |  |-  ( T. -> D e. ( Met ` X ) ) | 
						
							| 7 | 4 1 5 6 | iscmet3 |  |-  ( T. -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) | 
						
							| 8 | 7 | mptru |  |-  ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 9 | 3 | ex |  |-  ( f e. ( Cau ` D ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) | 
						
							| 10 | 8 9 | mprgbir |  |-  D e. ( CMet ` X ) |