Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet3i.2 |
|- J = ( MetOpen ` D ) |
2 |
|
iscmet3i.3 |
|- D e. ( Met ` X ) |
3 |
|
iscmet3i.4 |
|- ( ( f e. ( Cau ` D ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` J ) ) |
4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
5 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
6 |
2
|
a1i |
|- ( T. -> D e. ( Met ` X ) ) |
7 |
4 1 5 6
|
iscmet3 |
|- ( T. -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) |
8 |
7
|
mptru |
|- ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
9 |
3
|
ex |
|- ( f e. ( Cau ` D ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
10 |
8 9
|
mprgbir |
|- D e. ( CMet ` X ) |