Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet3.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iscmet3.2 |
|- J = ( MetOpen ` D ) |
3 |
|
iscmet3.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
iscmet3.4 |
|- ( ph -> D e. ( Met ` X ) ) |
5 |
|
iscmet3.6 |
|- ( ph -> F : Z --> X ) |
6 |
|
iscmet3.9 |
|- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
7 |
|
iscmet3.10 |
|- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
8 |
1
|
iscmet3lem3 |
|- ( ( M e. ZZ /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) |
9 |
3 8
|
sylan |
|- ( ( ph /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) |
10 |
1
|
r19.2uz |
|- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) |
11 |
9 10
|
syl |
|- ( ( ph /\ r e. RR+ ) -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) |
12 |
|
fveq2 |
|- ( n = k -> ( S ` n ) = ( S ` k ) ) |
13 |
12
|
eleq2d |
|- ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) |
14 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
15 |
|
simpl |
|- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> k e. Z ) |
16 |
15
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. Z ) |
17 |
|
rsp |
|- ( A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) -> ( k e. Z -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) ) |
18 |
14 16 17
|
sylc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
19 |
16 1
|
eleqtrdi |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( ZZ>= ` M ) ) |
20 |
|
eluzfz2 |
|- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
21 |
19 20
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... k ) ) |
22 |
13 18 21
|
rspcdva |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. ( S ` k ) ) |
23 |
12
|
eleq2d |
|- ( n = k -> ( ( F ` j ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` k ) ) ) |
24 |
|
oveq2 |
|- ( k = j -> ( M ... k ) = ( M ... j ) ) |
25 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
26 |
25
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` n ) ) ) |
27 |
24 26
|
raleqbidv |
|- ( k = j -> ( A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) <-> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) ) |
28 |
1
|
uztrn2 |
|- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
29 |
28
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. Z ) |
30 |
27 14 29
|
rspcdva |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) |
31 |
|
simprr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. ( ZZ>= ` k ) ) |
32 |
|
elfzuzb |
|- ( k e. ( M ... j ) <-> ( k e. ( ZZ>= ` M ) /\ j e. ( ZZ>= ` k ) ) ) |
33 |
19 31 32
|
sylanbrc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... j ) ) |
34 |
23 30 33
|
rspcdva |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. ( S ` k ) ) |
35 |
6
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
36 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
37 |
36 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
38 |
37
|
ad2antrl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ZZ ) |
39 |
|
rsp |
|- ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
40 |
35 38 39
|
sylc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
41 |
|
oveq1 |
|- ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) |
42 |
41
|
breq1d |
|- ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
43 |
|
oveq2 |
|- ( v = ( F ` j ) -> ( ( F ` k ) D v ) = ( ( F ` k ) D ( F ` j ) ) ) |
44 |
43
|
breq1d |
|- ( v = ( F ` j ) -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) ) |
45 |
42 44
|
rspc2va |
|- ( ( ( ( F ` k ) e. ( S ` k ) /\ ( F ` j ) e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) |
46 |
22 34 40 45
|
syl21anc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) |
47 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> D e. ( Met ` X ) ) |
48 |
5
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> F : Z --> X ) |
49 |
|
ffvelrn |
|- ( ( F : Z --> X /\ k e. Z ) -> ( F ` k ) e. X ) |
50 |
48 15 49
|
syl2an |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. X ) |
51 |
|
ffvelrn |
|- ( ( F : Z --> X /\ j e. Z ) -> ( F ` j ) e. X ) |
52 |
48 28 51
|
syl2an |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. X ) |
53 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` j ) e. X ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) |
54 |
47 50 52 53
|
syl3anc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) |
55 |
|
1rp |
|- 1 e. RR+ |
56 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
57 |
55 56
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
58 |
|
rpexpcl |
|- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
59 |
57 38 58
|
sylancr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
60 |
59
|
rpred |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
61 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
62 |
61
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> r e. RR ) |
63 |
|
lttr |
|- ( ( ( ( F ` k ) D ( F ` j ) ) e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR /\ r e. RR ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
64 |
54 60 62 63
|
syl3anc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
65 |
46 64
|
mpand |
|- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
66 |
65
|
anassrs |
|- ( ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
67 |
66
|
ralrimdva |
|- ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < r -> A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
68 |
67
|
reximdva |
|- ( ( ph /\ r e. RR+ ) -> ( E. k e. Z ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
69 |
11 68
|
mpd |
|- ( ( ph /\ r e. RR+ ) -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) |
70 |
69
|
ralrimiva |
|- ( ph -> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) |
71 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
72 |
4 71
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
73 |
|
eqidd |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = ( F ` j ) ) |
74 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
75 |
1 72 3 73 74 5
|
iscauf |
|- ( ph -> ( F e. ( Cau ` D ) <-> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
76 |
70 75
|
mpbird |
|- ( ph -> F e. ( Cau ` D ) ) |