| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iscmet3.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 3 |  | iscmet3.3 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | iscmet3.4 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 5 |  | iscmet3.6 |  |-  ( ph -> F : Z --> X ) | 
						
							| 6 |  | iscmet3.9 |  |-  ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 7 |  | iscmet3.10 |  |-  ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) | 
						
							| 8 | 1 | iscmet3lem3 |  |-  ( ( M e. ZZ /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) | 
						
							| 9 | 3 8 | sylan |  |-  ( ( ph /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) | 
						
							| 10 | 1 | r19.2uz |  |-  ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ph /\ r e. RR+ ) -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) | 
						
							| 12 |  | fveq2 |  |-  ( n = k -> ( S ` n ) = ( S ` k ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) | 
						
							| 14 | 7 | ad2antrr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) | 
						
							| 15 |  | simpl |  |-  ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> k e. Z ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. Z ) | 
						
							| 17 |  | rsp |  |-  ( A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) -> ( k e. Z -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) ) | 
						
							| 18 | 14 16 17 | sylc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) | 
						
							| 19 | 16 1 | eleqtrdi |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 20 |  | eluzfz2 |  |-  ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... k ) ) | 
						
							| 22 | 13 18 21 | rspcdva |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. ( S ` k ) ) | 
						
							| 23 | 12 | eleq2d |  |-  ( n = k -> ( ( F ` j ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` k ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( k = j -> ( M ... k ) = ( M ... j ) ) | 
						
							| 25 |  | fveq2 |  |-  ( k = j -> ( F ` k ) = ( F ` j ) ) | 
						
							| 26 | 25 | eleq1d |  |-  ( k = j -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` n ) ) ) | 
						
							| 27 | 24 26 | raleqbidv |  |-  ( k = j -> ( A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) <-> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) ) | 
						
							| 28 | 1 | uztrn2 |  |-  ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. Z ) | 
						
							| 30 | 27 14 29 | rspcdva |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) | 
						
							| 31 |  | simprr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. ( ZZ>= ` k ) ) | 
						
							| 32 |  | elfzuzb |  |-  ( k e. ( M ... j ) <-> ( k e. ( ZZ>= ` M ) /\ j e. ( ZZ>= ` k ) ) ) | 
						
							| 33 | 19 31 32 | sylanbrc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... j ) ) | 
						
							| 34 | 23 30 33 | rspcdva |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. ( S ` k ) ) | 
						
							| 35 | 6 | ad2antrr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 36 |  | eluzelz |  |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ ) | 
						
							| 37 | 36 1 | eleq2s |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 38 | 37 | ad2antrl |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ZZ ) | 
						
							| 39 |  | rsp |  |-  ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 40 | 35 38 39 | sylc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 41 |  | oveq1 |  |-  ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) | 
						
							| 42 | 41 | breq1d |  |-  ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 43 |  | oveq2 |  |-  ( v = ( F ` j ) -> ( ( F ` k ) D v ) = ( ( F ` k ) D ( F ` j ) ) ) | 
						
							| 44 | 43 | breq1d |  |-  ( v = ( F ` j ) -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 45 | 42 44 | rspc2va |  |-  ( ( ( ( F ` k ) e. ( S ` k ) /\ ( F ` j ) e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 46 | 22 34 40 45 | syl21anc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 47 | 4 | ad2antrr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> D e. ( Met ` X ) ) | 
						
							| 48 | 5 | adantr |  |-  ( ( ph /\ r e. RR+ ) -> F : Z --> X ) | 
						
							| 49 |  | ffvelcdm |  |-  ( ( F : Z --> X /\ k e. Z ) -> ( F ` k ) e. X ) | 
						
							| 50 | 48 15 49 | syl2an |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. X ) | 
						
							| 51 |  | ffvelcdm |  |-  ( ( F : Z --> X /\ j e. Z ) -> ( F ` j ) e. X ) | 
						
							| 52 | 48 28 51 | syl2an |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. X ) | 
						
							| 53 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` j ) e. X ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) | 
						
							| 54 | 47 50 52 53 | syl3anc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) | 
						
							| 55 |  | 1rp |  |-  1 e. RR+ | 
						
							| 56 |  | rphalfcl |  |-  ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) | 
						
							| 57 | 55 56 | ax-mp |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 58 |  | rpexpcl |  |-  ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 59 | 57 38 58 | sylancr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 60 | 59 | rpred |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR ) | 
						
							| 61 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 62 | 61 | ad2antlr |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> r e. RR ) | 
						
							| 63 |  | lttr |  |-  ( ( ( ( F ` k ) D ( F ` j ) ) e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR /\ r e. RR ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 64 | 54 60 62 63 | syl3anc |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 65 | 46 64 | mpand |  |-  ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 66 | 65 | anassrs |  |-  ( ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 67 | 66 | ralrimdva |  |-  ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < r -> A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 68 | 67 | reximdva |  |-  ( ( ph /\ r e. RR+ ) -> ( E. k e. Z ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 69 | 11 68 | mpd |  |-  ( ( ph /\ r e. RR+ ) -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) | 
						
							| 70 | 69 | ralrimiva |  |-  ( ph -> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) | 
						
							| 71 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 72 | 4 71 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 73 |  | eqidd |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) = ( F ` j ) ) | 
						
							| 74 |  | eqidd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 75 | 1 72 3 73 74 5 | iscauf |  |-  ( ph -> ( F e. ( Cau ` D ) <-> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) | 
						
							| 76 | 70 75 | mpbird |  |-  ( ph -> F e. ( Cau ` D ) ) |