| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
iscmet3.2 |
|- J = ( MetOpen ` D ) |
| 3 |
|
iscmet3.3 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
iscmet3.4 |
|- ( ph -> D e. ( Met ` X ) ) |
| 5 |
|
iscmet3.6 |
|- ( ph -> F : Z --> X ) |
| 6 |
|
iscmet3.9 |
|- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 7 |
|
iscmet3.10 |
|- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
| 8 |
|
iscmet3.7 |
|- ( ph -> G e. ( Fil ` X ) ) |
| 9 |
|
iscmet3.8 |
|- ( ph -> S : ZZ --> G ) |
| 10 |
|
iscmet3.5 |
|- ( ph -> F e. dom ( ~~>t ` J ) ) |
| 11 |
|
eldmg |
|- ( F e. dom ( ~~>t ` J ) -> ( F e. dom ( ~~>t ` J ) <-> E. x F ( ~~>t ` J ) x ) ) |
| 12 |
11
|
ibi |
|- ( F e. dom ( ~~>t ` J ) -> E. x F ( ~~>t ` J ) x ) |
| 13 |
10 12
|
syl |
|- ( ph -> E. x F ( ~~>t ` J ) x ) |
| 14 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 15 |
4 14
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 16 |
2
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 18 |
|
lmcl |
|- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) x ) -> x e. X ) |
| 19 |
17 18
|
sylan |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. X ) |
| 20 |
15
|
adantr |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> D e. ( *Met ` X ) ) |
| 21 |
2
|
mopni2 |
|- ( ( D e. ( *Met ` X ) /\ y e. J /\ x e. y ) -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) |
| 22 |
21
|
3expia |
|- ( ( D e. ( *Met ` X ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) |
| 23 |
20 22
|
sylan |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) |
| 24 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> G e. ( Fil ` X ) ) |
| 25 |
3
|
ad2antrr |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> M e. ZZ ) |
| 26 |
|
rphalfcl |
|- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
| 27 |
26
|
adantl |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
| 28 |
1
|
iscmet3lem3 |
|- ( ( M e. ZZ /\ ( r / 2 ) e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) |
| 29 |
25 27 28
|
syl2anc |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) |
| 30 |
20
|
adantr |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> D e. ( *Met ` X ) ) |
| 31 |
19
|
adantr |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. X ) |
| 32 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) |
| 33 |
30 31 27 32
|
syl3anc |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) |
| 34 |
|
simplr |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F ( ~~>t ` J ) x ) |
| 35 |
27
|
rpxrd |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR* ) |
| 36 |
2
|
blopn |
|- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR* ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) |
| 37 |
30 31 35 36
|
syl3anc |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) |
| 38 |
1 33 25 34 37
|
lmcvg |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) |
| 39 |
1
|
rexanuz2 |
|- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) |
| 40 |
1
|
r19.2uz |
|- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) |
| 41 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> G e. ( Fil ` X ) ) |
| 42 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> S : ZZ --> G ) |
| 43 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 44 |
43 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
| 45 |
44
|
ad2antrl |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> k e. ZZ ) |
| 46 |
|
ffvelcdm |
|- ( ( S : ZZ --> G /\ k e. ZZ ) -> ( S ` k ) e. G ) |
| 47 |
42 45 46
|
syl2anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) e. G ) |
| 48 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
| 49 |
48
|
adantl |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> r e. RR* ) |
| 50 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` D ) r ) C_ X ) |
| 51 |
30 31 49 50
|
syl3anc |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) C_ X ) |
| 52 |
51
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) C_ X ) |
| 53 |
44
|
adantl |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> k e. ZZ ) |
| 54 |
|
1rp |
|- 1 e. RR+ |
| 55 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
| 56 |
54 55
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
| 57 |
|
rpexpcl |
|- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 58 |
56 57
|
mpan |
|- ( k e. ZZ -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 59 |
53 58
|
syl |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 60 |
59
|
rpred |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 61 |
27
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR+ ) |
| 62 |
61
|
rpred |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR ) |
| 63 |
|
ltle |
|- ( ( ( ( 1 / 2 ) ^ k ) e. RR /\ ( r / 2 ) e. RR ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) |
| 64 |
60 62 63
|
syl2anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) |
| 65 |
|
fveq2 |
|- ( n = k -> ( S ` n ) = ( S ` k ) ) |
| 66 |
65
|
eleq2d |
|- ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) |
| 67 |
7
|
r19.21bi |
|- ( ( ph /\ k e. Z ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
| 68 |
|
eluzfz2 |
|- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
| 69 |
68 1
|
eleq2s |
|- ( k e. Z -> k e. ( M ... k ) ) |
| 70 |
69
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) |
| 71 |
66 67 70
|
rspcdva |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( S ` k ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. ( S ` k ) ) |
| 73 |
|
simpr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( S ` k ) ) |
| 74 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 75 |
44
|
ad2antlr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> k e. ZZ ) |
| 76 |
|
rsp |
|- ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 77 |
74 75 76
|
sylc |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 78 |
|
oveq1 |
|- ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) |
| 79 |
78
|
breq1d |
|- ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 80 |
|
oveq2 |
|- ( v = y -> ( ( F ` k ) D v ) = ( ( F ` k ) D y ) ) |
| 81 |
80
|
breq1d |
|- ( v = y -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 82 |
79 81
|
rspc2va |
|- ( ( ( ( F ` k ) e. ( S ` k ) /\ y e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) |
| 83 |
72 73 77 82
|
syl21anc |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) |
| 84 |
15
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> D e. ( *Met ` X ) ) |
| 85 |
44 58
|
syl |
|- ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 86 |
85
|
rpxrd |
|- ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 87 |
86
|
ad2antlr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 88 |
5
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. X ) |
| 89 |
88
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. X ) |
| 90 |
8
|
adantr |
|- ( ( ph /\ k e. Z ) -> G e. ( Fil ` X ) ) |
| 91 |
9 44 46
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( S ` k ) e. G ) |
| 92 |
|
filelss |
|- ( ( G e. ( Fil ` X ) /\ ( S ` k ) e. G ) -> ( S ` k ) C_ X ) |
| 93 |
90 91 92
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( S ` k ) C_ X ) |
| 94 |
93
|
sselda |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. X ) |
| 95 |
|
elbl2 |
|- ( ( ( D e. ( *Met ` X ) /\ ( ( 1 / 2 ) ^ k ) e. RR* ) /\ ( ( F ` k ) e. X /\ y e. X ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 96 |
84 87 89 94 95
|
syl22anc |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 97 |
83 96
|
mpbird |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 98 |
97
|
ex |
|- ( ( ph /\ k e. Z ) -> ( y e. ( S ` k ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) ) |
| 99 |
98
|
ssrdv |
|- ( ( ph /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 100 |
99
|
ad4ant14 |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 101 |
30
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> D e. ( *Met ` X ) ) |
| 102 |
5
|
ad2antrr |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F : Z --> X ) |
| 103 |
102
|
ffvelcdmda |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. X ) |
| 104 |
59
|
rpxrd |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 105 |
35
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR* ) |
| 106 |
|
ssbl |
|- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) /\ ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
| 107 |
106
|
3expia |
|- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 108 |
101 103 104 105 107
|
syl22anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 109 |
|
sstr |
|- ( ( ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) /\ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
| 110 |
100 108 109
|
syl6an |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 111 |
64 110
|
syld |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 112 |
111
|
adantrd |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 113 |
112
|
impr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
| 114 |
31
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> x e. X ) |
| 115 |
|
blcom |
|- ( ( ( D e. ( *Met ` X ) /\ ( r / 2 ) e. RR* ) /\ ( x e. X /\ ( F ` k ) e. X ) ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 116 |
101 105 114 103 115
|
syl22anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 117 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
| 118 |
117
|
ad2antlr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> r e. RR ) |
| 119 |
|
blhalf |
|- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( r e. RR /\ x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) |
| 120 |
119
|
expr |
|- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ r e. RR ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 121 |
101 103 118 120
|
syl21anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 122 |
116 121
|
sylbid |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 123 |
122
|
adantld |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 124 |
123
|
impr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) |
| 125 |
113 124
|
sstrd |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( x ( ball ` D ) r ) ) |
| 126 |
|
filss |
|- ( ( G e. ( Fil ` X ) /\ ( ( S ` k ) e. G /\ ( x ( ball ` D ) r ) C_ X /\ ( S ` k ) C_ ( x ( ball ` D ) r ) ) ) -> ( x ( ball ` D ) r ) e. G ) |
| 127 |
41 47 52 125 126
|
syl13anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) e. G ) |
| 128 |
127
|
rexlimdvaa |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 129 |
40 128
|
syl5 |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 130 |
39 129
|
biimtrrid |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 131 |
29 38 130
|
mp2and |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) e. G ) |
| 132 |
131
|
ad2ant2r |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) e. G ) |
| 133 |
17
|
adantr |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> J e. ( TopOn ` X ) ) |
| 134 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ y e. J ) -> y C_ X ) |
| 135 |
133 134
|
sylan |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> y C_ X ) |
| 136 |
135
|
adantr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y C_ X ) |
| 137 |
|
simprr |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) C_ y ) |
| 138 |
|
filss |
|- ( ( G e. ( Fil ` X ) /\ ( ( x ( ball ` D ) r ) e. G /\ y C_ X /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) |
| 139 |
24 132 136 137 138
|
syl13anc |
|- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) |
| 140 |
139
|
rexlimdvaa |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( E. r e. RR+ ( x ( ball ` D ) r ) C_ y -> y e. G ) ) |
| 141 |
23 140
|
syld |
|- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> y e. G ) ) |
| 142 |
141
|
ralrimiva |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> A. y e. J ( x e. y -> y e. G ) ) |
| 143 |
|
flimopn |
|- ( ( J e. ( TopOn ` X ) /\ G e. ( Fil ` X ) ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
| 144 |
17 8 143
|
syl2anc |
|- ( ph -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
| 145 |
144
|
adantr |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
| 146 |
19 142 145
|
mpbir2and |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. ( J fLim G ) ) |
| 147 |
146
|
ne0d |
|- ( ( ph /\ F ( ~~>t ` J ) x ) -> ( J fLim G ) =/= (/) ) |
| 148 |
13 147
|
exlimddv |
|- ( ph -> ( J fLim G ) =/= (/) ) |