Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet3.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
simpl |
|- ( ( M e. ZZ /\ R e. RR+ ) -> M e. ZZ ) |
3 |
|
simpr |
|- ( ( M e. ZZ /\ R e. RR+ ) -> R e. RR+ ) |
4 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
5 |
4 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
6 |
5
|
adantl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> k e. ZZ ) |
7 |
|
oveq2 |
|- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
8 |
|
eqid |
|- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |
9 |
|
ovex |
|- ( ( 1 / 2 ) ^ k ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( k e. ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
11 |
6 10
|
syl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
12 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
13 |
12
|
reseq2i |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) |
14 |
|
nn0ssz |
|- NN0 C_ ZZ |
15 |
|
resmpt |
|- ( NN0 C_ ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
16 |
14 15
|
ax-mp |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
17 |
13 16
|
eqtr3i |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
18 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
19 |
18
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( 1 / 2 ) e. CC ) |
20 |
|
halfre |
|- ( 1 / 2 ) e. RR |
21 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
22 |
|
absid |
|- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
23 |
20 21 22
|
mp2an |
|- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
24 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
25 |
23 24
|
eqbrtri |
|- ( abs ` ( 1 / 2 ) ) < 1 |
26 |
25
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( abs ` ( 1 / 2 ) ) < 1 ) |
27 |
19 26
|
expcnv |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
28 |
17 27
|
eqbrtrid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 ) |
29 |
|
0z |
|- 0 e. ZZ |
30 |
|
zex |
|- ZZ e. _V |
31 |
30
|
mptex |
|- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V |
32 |
31
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) |
33 |
|
climres |
|- ( ( 0 e. ZZ /\ ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
34 |
29 32 33
|
sylancr |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
35 |
28 34
|
mpbid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
36 |
1 2 3 11 35
|
climi0 |
|- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R ) |
37 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
38 |
|
1rp |
|- 1 e. RR+ |
39 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
40 |
38 39
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
41 |
|
rpexpcl |
|- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
42 |
40 6 41
|
sylancr |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
43 |
|
rpre |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( ( 1 / 2 ) ^ k ) e. RR ) |
44 |
|
rpge0 |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> 0 <_ ( ( 1 / 2 ) ^ k ) ) |
45 |
43 44
|
absidd |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
46 |
42 45
|
syl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
47 |
46
|
breq1d |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
48 |
37 47
|
sylan2 |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
49 |
48
|
anassrs |
|- ( ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
50 |
49
|
ralbidva |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
51 |
50
|
rexbidva |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
52 |
36 51
|
mpbid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) |