| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscms.1 |
|- X = ( Base ` M ) |
| 2 |
|
iscms.2 |
|- D = ( ( dist ` M ) |` ( X X. X ) ) |
| 3 |
|
fvexd |
|- ( w = M -> ( Base ` w ) e. _V ) |
| 4 |
|
fveq2 |
|- ( w = M -> ( dist ` w ) = ( dist ` M ) ) |
| 5 |
4
|
adantr |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( dist ` w ) = ( dist ` M ) ) |
| 6 |
|
id |
|- ( b = ( Base ` w ) -> b = ( Base ` w ) ) |
| 7 |
|
fveq2 |
|- ( w = M -> ( Base ` w ) = ( Base ` M ) ) |
| 8 |
7 1
|
eqtr4di |
|- ( w = M -> ( Base ` w ) = X ) |
| 9 |
6 8
|
sylan9eqr |
|- ( ( w = M /\ b = ( Base ` w ) ) -> b = X ) |
| 10 |
9
|
sqxpeqd |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( b X. b ) = ( X X. X ) ) |
| 11 |
5 10
|
reseq12d |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 12 |
11 2
|
eqtr4di |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = D ) |
| 13 |
9
|
fveq2d |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( CMet ` b ) = ( CMet ` X ) ) |
| 14 |
12 13
|
eleq12d |
|- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) |
| 15 |
3 14
|
sbcied |
|- ( w = M -> ( [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) |
| 16 |
|
df-cms |
|- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
| 17 |
15 16
|
elrab2 |
|- ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) |